620
Views
101
CrossRef citations to date
0
Altmetric
Review

Caspase-9 as a therapeutic target for treating cancer

, MD (KMD) PhD, , PhD & , MD (KMD) PhD (Professor)

Bibliography

  • Park HH. Structural features of caspase-activating complexes. Int J Mol Sci 2012;13(4):4807-18
  • Pawlowski K, Pio F, Chu Z, et al. PAAD - a new protein domain associated with apoptosis, cancer and autoimmune diseases. Trends Biochem Sci 2001;26(2):85-7
  • Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997;3(8):917-21
  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001;411(6835):342-8
  • Logue SE, Gustafsson AB, Samali A, et al. Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol 2005;38(1):21-33
  • Oliveira JB, Gupta S. Disorders of apoptosis: mechanisms for autoimmunity in primary immunodeficiency diseases. J Clin Immunol 2008;28(Suppl 1):S20-8
  • Wurstle ML, Laussmann MA, Rehm M. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res 2012;318(11):1213-20
  • Raina D, Pandey P, Ahmad R, et al. c-Abl tyrosine kinase regulates caspase-9 autocleavage in the apoptotic response to DNA damage. J Biol Chem 2005;280(12):11147-51
  • Allan LA, Clarke PR. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 2007;26(2):301-10
  • Allan LA, Morrice N, Brady S, et al. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 2003;5(7):647-54
  • Martin MC, Allan LA, Mancini EJ, et al. The docking interaction of caspase-9 with ERK2 provides a mechanism for the selective inhibitory phosphorylation of caspase-9 at threonine 125. J Biol Chem 2008;283(7):3854-65
  • Seifert A, Allan LA, Clarke PR. DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J 2008;275(24):6268-80
  • Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282(5392):1318-21
  • Brady SC, Allan LA, Clarke PR. Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol Cell Biol 2005;25(23):10543-55
  • McDonnell MA, Abedin MJ, Melendez M, et al. Phosphorylation of murine caspase-9 by the protein kinase casein kinase 2 regulates its cleavage by caspase-8. J Biol Chem 2008;283(29):20149-58
  • Garrido C, Galluzzi L, Brunet M, et al. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 2006;13(9):1423-33
  • Beesoo R, Neergheen-Bhujun V, Bhagooli R, et al. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res 2014. [Epub ahead of print]
  • Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94(3):339-52
  • Renatus M, Stennicke HR, Scott FL, et al. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 2001;98(25):14250-5
  • Pop C, Timmer J, Sperandio S, et al. The apoptosome activates caspase-9 by dimerization. Mol Cell 2006;22(2):269-75
  • Gupta P, Kim B, Kim SH, et al. Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res 2014;58(8):1685-707
  • Cang S, Ma Y, Chiao JW, et al. Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells. Exp Hematol Oncol 2014;3(1):5
  • Cuddihy SL, Brown KK, Thomson SJ, et al. Induction of apoptosis by phenethyl isothiocyanate in cells overexpressing Bcl-XL. Cancer Lett 2008;271(2):215-21
  • Yaoxian W, Hui Y, Yunyan Z, et al. Emodin induces apoptosis of human cervical cancer hela cells via intrinsic mitochondrial and extrinsic death receptor pathway. Cancer Cell Int 2013;13(1):71
  • Ha MK, Song YH, Jeong SJ, et al. Emodin inhibits proinflammatory responses and inactivates histone deacetylase 1 in hypoxic rheumatoid synoviocytes. Biol Pharm Bull 2011;34(9):1432-7
  • Jiang FL, Leo S, Wang XG, et al. Effect of tanshinone IIA on cardiomyocyte hypertrophy and apoptosis in spontaneously hypertensive rats. Exp Ther Med 2013;6(6):1517-21
  • Jiao JW, Wen F. Tanshinone IIA acts via p38 MAPK to induce apoptosis and the down-regulation of ERCC1 and lung-resistance protein in cisplatin-resistant ovarian cancer cells. Oncol Rep 2010;25(3):781-8
  • Jung JH, Kwon TR, Jeong SJ, et al. Apoptosis induced by tanshinone IIA and cryptotanshinone is mediated by distinct JAK/STAT3/5 and SHP1/2 signaling in chronic myeloid leukemia K562 cells. Evid Based Complement Alternat Med 2013;2013:805639
  • Yun SM, Jung JH, Jeong SJ, et al. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res 2013;28(3):458-64
  • Park JH, Kwon HY, Sohn EJ, et al. Inhibition of Wnt/beta-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells. Pharmacol Rep 2013;65(5):1366-74
  • Jang J, Jeong SJ, Kwon HY, et al. Decursin and doxorubicin are in synergy for the induction of apoptosis via STAT3 and/or mTOR pathways in human multiple myeloma cells. Evid Based Complement Alternat Med 2013;2013:506324
  • Choi SR, Lee JH, Kim JY, et al. Decursin from Angelicagigas Nakai induces apoptosis in RC-58T/h/SA#4 primary human prostate cancer cells via a mitochondria-related caspase pathway. Food Chem Toxicol 2011;49(10):2517-23
  • Yim D, Singh RP, Agarwal C, et al. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 2005;65(3):1035-44
  • De Raedt T, Brems H, Wolkenstein P, et al. Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet 2003;72(5):1288-92
  • Piddubnyak V, Rigou P, Michel L, et al. Positive regulation of apoptosis by HCA66, a new Apaf-1 interacting protein, and its putative role in the physiopathology of NF1 microdeletion syndrome patients. Cell Death Differ 2007;14(6):1222-33
  • Ruiz-Vela A, Korsmeyer SJ. Proapoptotic histone H1.2 induces CASP-3 and -7 activation by forming a protein complex with CYT c, APAF-1 and CASP-9. FEBS Lett 2007;581(18):3422-8
  • Jiang X, Kim HE, Shu H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003;299(5604):223-6
  • Yuan JY, Horvitz HR. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 1990;138(1):33-41
  • Yang X, Chang HY, Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 1998;281(5381):1355-7
  • Chu ZL, Pio F, Xie Z, et al. A novel enhancer of the Apaf1 apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. J Biol Chem 2001;276(12):9239-45
  • Hlaing T, Guo RF, Dilley KA, et al. Molecular cloning and characterization of DEFCAP-L and -S, two isoforms of a novel member of the mammalian Ced-4 family of apoptosis proteins. J Biol Chem 2001;276(12):9230-8
  • Sakai T, Liu L, Shishido Y, et al. Identification of a novel, embryonal carcinoma cell-associated molecule, nucling, that is up-regulated during cardiac muscle differentiation. J Biochem 2003;133(4):429-36
  • Yu F, Finley RLJr, Raz A, et al. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem 2002;277(18):15819-27
  • Welch AY, Herman IM. Cloning and characterization of betaCAP73, a novel regulator of beta-actin assembly. Int J Biochem Cell Biol 2002;34(7):864-81
  • Sakai T, Liu L, Teng X, et al. Nucling recruits Apaf-1/pro-caspase-9 complex for the induction of stress-induced apoptosis. J Biol Chem 2004;279(39):41131-40
  • Cho DC. Targeting the PI3K/Akt/mTOR pathway in malignancy: rationale and clinical outlook. BioDrugs 2014;8(4):373-81
  • Ocana A, Vera-Badillo F, Al-Mubarak M, et al. Activation of the PI3K/mTOR/Akt Pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 2014;9(4):e95219
  • Kang W, Hong SH, Lee HM, et al. Structural and biochemical basis for the inhibition of cell death by APIP, a methionine salvage enzyme. Proc Natl Acad Sci USA 2013;111(1):E54-61
  • Kang W, Yang JK. Crystallization and preliminary X-ray crystallographic analysis of human Apaf-1-interacting protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012;68(Pt 12):1518-20
  • Cho DH, Lee HJ, Kim HJ, et al. Suppression of hypoxic cell death by APIP-induced sustained activation of Akt and ERK1/2. Oncogene 2007;26(19):2809-14
  • Cho DH, Hong YM, Lee HJ, et al. Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. J Biol Chem 2004;279(38):39942-50
  • Chen L, Wang Z, Tang B, et al. Altered expression of c-Abl in patients with epilepsy and in a rat model. Synapse 2014;68(7):306-16
  • Arora S, Saini S, Fukuhara S, et al. MicroRNA-4723 inhibits prostate cancer growth through inactivation of the Abelson family of nonreceptor protein tyrosine kinases. PLoS One 2013;8(11):e78023
  • Kharbanda S, Ren R, Pandey P, et al. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 1995;376(6543):785-8
  • Yuan ZM, Huang Y, Fan MM, et al. Genotoxic drugs induce interaction of the c-Abl tyrosine kinase and the tumor suppressor protein p53. J Biol Chem 1996;271(43):26457-60
  • Raynaud C, Mallory AC, Latrasse D, et al. Chromatin meets the cell cycle. J Exp Bot 2014;65(10):2677-89
  • Koltovaya NA. [Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle]. Genetika 2014;49(7):797-813
  • Meggio F, Pinna LA. One-thousand-and-one substrates of protein kinase CK2? FASEB J 2003;17(3):349-68
  • Graciotti M, Alam M, Solyakov L, et al. Malaria protein kinase CK2 (PfCK2) shows novel mechanisms of regulation. PLoS One 2014;9(3):e85391
  • Intemann J, Saidu NE, Schwind L, et al. ER stress signaling in ARPE-19 cells after inhibition of protein kinase CK2 by CX-4945. Cell Signal 2014;26(7):1567-75
  • Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003;369(Pt 1):1-15
  • Becker W, Weber Y, Wetzel K, et al. Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J Biol Chem 1998;273(40):25893-902
  • Becker W, Joost HG. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol 1999;62:1-17
  • Seifert A, Clarke PR. p38alpha- and DYRK1A-dependent phosphorylation of caspase-9 at an inhibitory site in response to hyperosmotic stress. Cell Signal 2009;21(11):1626-33
  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68(2):320-44
  • Pramanik R, Qi X, Borowicz S, et al. p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p38 MAPK signal specificity. J Biol Chem 2003;278(7):4831-9
  • Melegari M, Scaglioni PP, Wands JR. Cloning and characterization of a novel hepatitis B virus x binding protein that inhibits viral replication. J Virol 1998;72(3):1737-43
  • Murakami S. Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol 2001;36(10):651-60
  • Marusawa H, Matsuzawa S, Welsh K, et al. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J 2003;22(11):2729-40
  • Juhasz K, Lipp AM, Nimmervoll B, et al. The complex function of hsp70 in metastatic cancer. Cancers (Basel) 2013;6(1):42-66
  • Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000;2(8):476-83
  • Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2(8):469-75
  • Li X, Tao H, Xie K, et al. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion. PLoS One 2014;9(3):e92003
  • Naderi EH, Findley HW, Ruud E, et al. Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood 2009;114(3):608-18
  • Chen TC, Hinton DR, Zidovetzki R, et al. Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest 1998;78(2):165-74
  • Martin MC, Allan LA, Lickrish M, et al. Protein kinase A regulates caspase-9 activation by Apaf-1 downstream of cytochrome c. J Biol Chem 2005;280(15):15449-55
  • Gutcher I, Webb PR, Anderson NG. The isoform-specific regulation of apoptosis by protein kinase C. Cell Mol Life Sci 2003;60(6):1061-70
  • Hofmann K, Bucher P, Tschopp J. The CARD domain: a new apoptotic signalling motif. Trends Biochem Sci 1997;22(5):155-6
  • Pathan N, Marusawa H, Krajewska M, et al. TUCAN, an antiapoptotic caspase-associated recruitment domain family protein overexpressed in cancer. J Biol Chem 2001;276(34):32220-9
  • Birnbaum MJ, Clem RJ, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 1994;68(4):2521-8
  • Huang Y, Park YC, Rich RL, et al. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 2001;104(5):781-90
  • Sun M, Meares G, Song L, et al. XIAP associates with GSK3 and inhibits the promotion of intrinsic apoptotic signaling by GSK3. Cell Signal 2009;21(12):1857-65
  • Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001;410(6824):112-16
  • Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003;11(2):519-27
  • Hsieh WJ, Lin FM, Huang HD, et al. Investigating microRNA-target interaction-supported tissues in human cancer tissues based on miRNA and target gene expression profiling. PLoS One 2014;9(4):e95697
  • Humeau M, Torrisani J, Cordelier P. miRNA in clinical practice: pancreatic cancer. Clin Biochem 2013;46(10-11):933-6
  • Kim CH, Kim HK, Rettig RL, et al. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genomics 2011;4:79
  • Li J, Kong X, Zhang J, et al. MiRNA-26b inhibits proliferation by targeting PTGS2 in breast cancer. Cancer Cell Int 2013;13(1):7
  • Tchatchou S, Jung A, Hemminki K, et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis 2009;30(1):59-64
  • Tie Y, Liu B, Fu H, et al. Circulating miRNA and cancer diagnosis. Sci China C Life Sci 2009;52(12):1117-22
  • Zhu Z, Gao W, Qian Z, et al. Genetic variation of miRNA sequence in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2009;41(5):407-13
  • Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008;20(2):214-21
  • Lima RT, Busacca S, Almeida GM, et al. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 2011;47(2):163-74
  • Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 2007;120(Pt 17):3045-52
  • Walker JC, Harland RM. microRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 2009;23(9):1046-51
  • Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 2010;15(Suppl 2):ii1-56
  • Singh S, Dirks PB. Brain tumor stem cells: identification and concepts. Neurosurg Clin N Am 2007;18(1):31-8; viii
  • Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer 2006;6(6):425-36
  • Floyd DH, Zhang Y, Dey BK, et al. Novel Anti-Apoptotic MicroRNAs 582-5p and 363 Promote Human Glioblastoma Stem Cell Survival via Direct Inhibition of Caspase 3, Caspase 9, and Bim. PLoS One 2014;9(5):e96239
  • Shang J, Yang F, Wang Y, et al. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem 2014;115(4):772-84
  • Kumar S, Pathania AS, Saxena AK, et al. The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells. Chem Biol Interact 2013;205(2):128-37
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012;75(3):311-35
  • Alabsi AM, Ali R, Ali AM, et al. Induction of caspase-9, biochemical assessment and morphological changes caused by apoptosis in cancer cells treated with goniothalamin extracted from Goniothalamus macrophyllus. Asian Pac J Cancer Prev 2013;14(11):6273-80
  • Alfredsson CF, Ding M, Liang QL, et al. Ellagic acid induces a dose- and time-dependent depolarization of mitochondria and activation of caspase-9 and -3 in human neuroblastoma cells. Biomed Pharmacother 2014;68(1):129-35
  • Booth BW, Inskeep BD, Shah H, et al. Tannic Acid preferentially targets estrogen receptor-positive breast cancer. Int J Breast Cancer 2013;2013:369609
  • Cheng L, Xia TS, Wang YF, et al. The apoptotic effect of D Rhamnose beta-Hederin, a novel oleanane-type triterpenoid saponin on breast cancer cells. PLoS One 2014;9(3):e90848
  • Cheng X, Xiao Y, Wang P, et al. The ethyl acetate fraction of Polytrichum commune L.ex Hedw induced cell apoptosis via reactive oxygen species in L1210 cells. J Ethnopharmacol 2013;148(3):926-33
  • Dong Y, Cao A, Shi J, et al. Tangeretin, a citrus polymethoxyflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic signaling pathways. Oncol Rep 2014;31(4):1788-94
  • Ji YB, Ji CF, Yue L. Study on human promyelocytic leukemia HL-60 cells apoptosis induced by fucosterol. Biomed Mater Eng 2014;24(1):845-51
  • Ji YB, Ji CF, Yue L. Human gastric cancer cell line SGC-7901 apoptosis induced by SFPS-B2 via a mitochondrial-mediated pathway. Biomed Mater Eng 2014;24(1):1141-7
  • Kuete V, Sandjo LP, Ouete JL, et al. Cytotoxicity and modes of action of three naturally occurring xanthones (8-hydroxycudraxanthone G, morusignin I and cudraxanthone I) against sensitive and multidrug-resistant cancer cell lines. Phytomedicine 2014;21(3):315-22
  • Lee YS, Choi KM, Kim W, et al. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod 2013;76(12):2195-202
  • Li T, Zhu J, Guo L, et al. Differential effects of polyphenols-enriched extracts from hawthorn fruit peels and fleshes on cell cycle and apoptosis in human MCF-7 breast carcinoma cells. Food Chem 2013;141(2):1008-18
  • Ma YC, Ke Y, Zi X, et al. Jaridonin, a novel ent-kaurene diterpenoid from Isodon rubescens, inducing apoptosis via production of reactive oxygen species in esophageal cancer cells. Curr Cancer Drug Targets 2013;13(6):611-24
  • Mo S, Xiong H, Shu G, et al. Phaseoloideside E, a novel natural triterpenoid saponin identified from Entada phaseoloides, induces apoptosis in Ec-109 esophageal cancer cells through reactive oxygen species generation. J Pharmacol Sci 2013;122(3):163-75
  • Park C, Park S, Chung YH, et al. Induction of apoptosis by a hexane extract of aged black garlic in the human leukemic U937 cells. Nutr Res Pract 2014;8(2):132-7
  • Park EH, Kim YJ, Yamabe N, et al. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J Ginseng Res 2014;38(1):22-7
  • Reyes-Zurita FJ, Rufino-Palomares EE, Medina PP, et al. Antitumour activity on extrinsic apoptotic targets of the triterpenoid maslinic acid in p53-deficient Caco-2 adenocarcinoma cells. Biochimie 2013;95(11):2157-67
  • Sagar S, Esau L, Holtermann K, et al. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complement Altern Med 2013;13:344
  • Shi X, Zhao Y, Jiao Y, et al. ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells. PLoS One 2013;8(5):e64266
  • Tusskorn O, Prawan A, Senggunprai L, et al. Phenethyl isothiocyanate induces apoptosis of cholangiocarcinoma cells through interruption of glutathione and mitochondrial pathway. Naunyn Schmiedebergs Arch Pharmacol 2013;386(11):1009-16
  • Wang Q, Du H, Geng G, et al. Matrine inhibits proliferation and induces apoptosis via BID-mediated mitochondrial pathway in esophageal cancer cells. Mol Biol Rep 2014;41(5):3009-20
  • Yang F, Nam S, Zhao R, et al. A novel synthetic derivative of the natural product berbamine inhibits cell viability and induces apoptosis of human osteosarcoma cells, associated with activation of JNK/AP-1 signaling. Cancer Biol Ther 2013;14(11):1024-31
  • Yao Y, Zhang YW, Sun LG, et al. Juglanthraquinone C, a novel natural compound derived from Juglans mandshurica Maxim, induces S phase arrest and apoptosis in HepG2 cells. Apoptosis 2012;17(8):832-41
  • Ye B, Yang J, Li J, et al. In vitro and in vivo antitumor activities of tenacissoside C from Marsdenia tenacissima. Planta Med 2013;80(1):29-38
  • Yu HY, Zhang XQ, Li X, et al. 2-methoxyjuglone induces apoptosis in HepG2 human hepatocellular carcinoma cells and exhibits in vivo antitumor activity in a H22 mouse hepatocellular carcinoma model. J Nat Prod 2013;76(5):889-95
  • Feng J, Tao T, Yan W, et al. Curcumin inhibits mitochondrial injury and apoptosis from the early stage in EAE mice. Oxid Med Cell Longev 2014;2014:728751
  • Malhotra A, Nair P, Dhawan DK. Study to evaluate molecular mechanics behind synergistic chemo-preventive effects of curcumin and resveratrol during lung carcinogenesis. PLoS One 2014;9(4):e93820
  • Li Y, Zhang S, Geng JX, et al. Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac J Cancer Prev 2013;14(8):4599-602
  • Mohankumar K, Pajaniradje S, Sridharan S, et al. Mechanism of apoptotic induction in human breast cancer cell, MCF-7, by an analog of curcumin in comparison with curcumin–an in vitro and in silico approach. Chem Biol Interact 2014;210:51-63
  • Yallapu MM, Maher DM, Sundram V, et al. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010;3:11
  • Cao Y, Liu Q. Therapeutic targets of multiple angiogenic factors for the treatment of cancer and metastasis. Adv Cancer Res 2007;97:203-24
  • Li W, Nie S, Yu Q, et al. (-)-Epigallocatechin-3-gallate induces apoptosis of human hepatoma cells by mitochondrial pathways related to reactive oxygen species. J Agric Food Chem 2009;57(15):6685-91
  • Chen NG, Lu CC, Lin YH, et al. Proteomic approaches to study epigallocatechin gallate-provoked apoptosis of TSGH-8301 human urinary bladder carcinoma cells: roles of Akt and heat shock protein 27-modulated intrinsic apoptotic pathways. Oncol Rep 2011;26(4):939-47
  • Das A, Banik NL, Ray SK. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 2010;116(1):164-76
  • Chen FP, Chien MH. Phytoestrogens induce differential effects on both normal and malignant human breast cells in vitro. Climacteric 2014;1-26
  • Dhandayuthapani S, Marimuthu P, Hormann V, et al. Induction of apoptosis in HeLa cells via caspase activation by resveratrol and genistein. J Med Food 2013;16(2):139-46
  • Chiyomaru T, Yamamura S, Fukuhara S, et al. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS One 2013;8(3):e58929
  • Pham J, Brownlow B, Elbayoumi T. Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers. Mol Pharm 2013;10(10):3789-800
  • ClinicalTrials.gov. CASPALLO: allodepleted T Cells Transduced With Inducible Caspase 9 Suicide Gene. 2008. Available from: https://clinicaltrials.gov/ct2/show/NCT00710892?term=caspase-9&rank=2
  • ClinicalTrials.gov. Administration of Donor T Cells With the Caspase-9 Suicide Gene (DOTTI). 2011. Available from: https://clinicaltrials.gov/ct2/show/NCT01494103?term=caspase-9&rank=1
  • Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116(2):205-19
  • Schafer ZT, Kornbluth S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell 2006;10(5):549-61
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239-57
  • Arends MJ, Wyllie AH. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 1991;32:223-54
  • Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004;5(11):897-907
  • Cohen GM. Caspases: the executioners of apoptosis. Biochem J 1997;326(Pt 1):1-16
  • Allan LA, Clarke PR. Apoptosis and autophagy: regulation of caspase-9 by phosphorylation. FEBS J 2009;276(21):6063-73
  • Cain K, Bratton SB, Langlais C, et al. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J Biol Chem 2000;275(9):6067-70
  • Yu X, Acehan D, Menetret JF, et al. A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure 2005;13(11):1725-35
  • Yi CH, Yuan J. The Jekyll and Hyde functions of caspases. Dev Cell 2009;16(1):21-34
  • Bratton SB, Salvesen GS. Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci 2010;123(Pt 19):3209-14
  • Bae JY, Park HH. Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem 2011;286(45):39528-36
  • Tashker JS, Olson M, Kornbluth S. Post-cytochrome C protection from apoptosis conferred by a MAPK pathway in xenopus egg extracts. Mol Biol Cell 2002;13(2):393-401
  • Dai XZ, Yin HT, Sun LF, et al. Potential therapeutic efficacy of curcumin in liver cancer. Asian Pac J Cancer Prev 2013;14(6):3855-9
  • Gao J, Wang F, Wang W, et al. Emodin suppresses hyperglycemia-induced proliferation and fibronectin expression in mesangial cells via inhibiting cFLIP. PLoS One 2014;9(4):e93588
  • Charoensinphon N, Qiu P, Dong P, et al. 5-Demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. Mol Nutr Food Res 2013;57(12):2103-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.