962
Views
16
CrossRef citations to date
0
Altmetric
Review

Emerging therapeutic targets for Gaucher disease

, , &

Bibliography

  • Gaucher PCE. De l’epithelioma primitif de la rate. These de Paris: 1882
  • Brady RO. Introduction: overview and historical perspective. In: Futerman AH, Zimran A, editors. Gaucher disease. Taylor & Francis Group; Boca Raton: 2007. p. 1-12
  • Aghion E. La maladie de Gaucher dans l’enfance. Faculté de Médecine; Paris: 1934
  • Brady RO, Kanfer JN, Shapiro D. Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun 1965;18:221-5
  • Patrick AD. Short communications: a deficiency of Glucocerebrosidase in Gaucher’s disease. Biochem J 1965;97:17C-8C
  • Weinreb NJ, Brady RO, Tappel AL. The lysosomal localization of sphingolipid hydrolases. Biochim Biophys Acta 1968;159:141-6
  • Sorge J, West C, Westwood B, Beutler E. Molecular cloning and nucleotide sequence of human glucocerebrosidase cDNA. Proc Natl Acad Sci USA 1985;82:7289-93
  • Horowitz M, Wilder S, Horowitz Z, et al. The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics 1989;4:87-96
  • Hruska KS, LaMarca ME, Scott CR, et al. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 2008;29:567-83
  • Dvir H, Harel M, McCarthy AA, et al. X-ray structure of human acid-beta-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep 2003;4:704-9
  • Premkumar L, Sawkar AR, Boldin-Adamsky S, et al. X-ray structure of human acid-beta-glucosidase covalently bound to conduritol-B-epoxide. Implications for Gaucher disease. J Biol Chem 2005;280:23815-19
  • Burns GF, Cawley JC, Flemans RJ, et al. Surface marker and other characteristics of Gaucher’s cells. J Clin Pathol 1977;30:981-8
  • Boven LA, van Meurs M, Boot RG, et al. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol 2004;122:359-69
  • Beutler E, Grabowski GA. Gaucher disease. In: Sciver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited diseases. 8th edition. McGraw-Hill; New York: 2001. p. 3635
  • Fuller M, Meikle PJ, Hopwood JJ. Epidemiology of lysosomal storage diseases: an overview. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis; Oxford: 2006
  • Ratjen F, Doring G. Cystic fibrosis. Lancet 2003;361:681-9
  • Walker FO. Huntington’s disease. Lancet 2007;369:218-28
  • Deegan PB, Cox TM. Imiglucerase in the treatment of Gaucher disease: a history and perspective. Drug Des Devel Ther 2012;6:81-106
  • Hruska KS, Goker-Alpan O, Sidransky E. Gaucher disease and the synucleinopathies. J Biomed Biotechnol 2006;2006:78549
  • Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009;361:1651-61
  • Schiffmann R, Vellodi A. Neuronopathic gaucher disease. In: Futerman AH, Zimran A, editors. Gaucher disease. Taylor & Francis Group; Boca Raton: 2007. p. 175-96
  • Futerman AH, Sussman JL, Horowitz M, et al. New directions in the treatment of Gaucher disease. Trends Pharmacol Sci 2004;25:147-51
  • Cox TM. Gaucher disease: clinical profile and therapeutic developments. Biologics 2010;4:299-313
  • Pastores GM, Hughes DA. Gaucher disease. In: GeneReviews® [Internet] Pagon RA, Adam MP, Ardinger HH, et al. editors. University of Washington: Seattle: 1993
  • Pentchev PG, Brady RO, Hibbert SR, et al. Isolation and characterization of glucocerebrosidase from human placental tissue. J Biol Chem 1973;248:5256-61
  • Zimran A, Elstein D, Levy-Lahad E, et al. Replacement therapy with imiglucerase for type 1 Gaucher’s disease. Lancet 1995;345:1479-80
  • Gonzalez DE, Turkia HB, Lukina EA, et al. Enzyme replacement therapy with velaglucerase alfa in Gaucher disease: results from a randomized, double-blind, multinational, Phase 3 study. Am J Hematol 2013;88:166-71
  • Zimran A, Pastores GM, Tylki-Szymanska A, et al. Safety and efficacy of velaglucerase alfa in Gaucher disease type 1 patients previously treated with imiglucerase. Am J Hematol 2013;88:172-8
  • Ben Turkia H, Gonzalez DE, Barton NW, et al. Velaglucerase alfa enzyme replacement therapy compared with imiglucerase in patients with Gaucher disease. Am J Hematol 2013;88:179-84
  • Brumshtein B, Salinas P, Peterson B, et al. Characterization of gene-activated human acid-beta-glucosidase: crystal structure, glycan composition, and internalization into macrophages. Glycobiology 2010;20:24-32
  • Zimran A, Loveday K, Fratazzi C, et al. A pharmacokinetic analysis of a novel enzyme replacement therapy with Gene-Activated human glucocerebrosidase (GA-GCB) in patients with type 1 Gaucher disease. Blood Cells Mol Dis 2007;39:115-18
  • Grabowski GA, Golembo M, Shaaltiel Y. Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 2014;112:1-8
  • Hollak CEM, Dahl vom S, Aerts JMFG, et al. Force majeure: therapeutic measures in response to restricted supply of imiglucerase (Cerezyme) for patients with Gaucher disease. Blood Cells Mol Dis 2010;44:41-7
  • Cox T, Lachmann R, Hollak C, et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000;355:1481-5
  • Platt FM, Cox TM. Substrate reduction therapy. In: Futerman AH, Zimran A, editors. Gaucher disease. Taylor & Francis Group; Boca Raton: 2007. p. 355-76
  • Zimran A. How I treat Gaucher disease. Blood 2011;118:1463-71
  • Platt FM, Neises GR, Dwek RA, et al. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 1994;269:8362-5
  • Boot RG, Verhoek M, Donker-Koopman W, et al. Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem 2007;282:1305-12
  • Kuter DJ, Mehta A, Hollak CEM, et al. Miglustat therapy in type 1 Gaucher disease: clinical and safety outcomes in a multicenter retrospective cohort study. Blood Cells Mol Dis 2013;51:116-24
  • Elstein D, Hollak C, Aerts JMFG, et al. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis 2004;27:757-66
  • Schiffmann R, Fitzgibbon EJ, Harris C, et al. Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Ann Neurol 2008;64:514-22
  • Lukina E, Watman N, Arreguin EA, et al. Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood 2010;116:4095-8
  • Cox TM. Eliglustat tartrate, an orally active glucocerebroside synthase inhibitor for the potential treatment of Gaucher disease and other lysosomal storage diseases. Curr Opin Investig Drugs 2010;11:1169-81
  • Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 2008;9:944-57
  • Hoseki J, Ushioda R, Nagata K. Mechanism and components of endoplasmic reticulum-associated degradation. J Biochem 2010;147:19-25
  • Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005;14:2387-98
  • Goldin E, Zheng W, Motabar O, et al. High throughput screening for small molecule therapy for Gaucher disease using patient tissue as the source of mutant glucocerebrosidase. PLoS One 2012;7:e29861
  • Patnaik S, Zheng W, Choi JH, et al. Discovery, structure-activity relationship, and biological evaluation of noninhibitory small molecule chaperones of glucocerebrosidase. J Med Chem 2012;55:5734-48
  • Sawkar AR, Cheng W-C, Beutler E, et al. Chemical chaperones increase the cellular activity of N370S beta -glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 2002;99:15428-33
  • Benito JM, Garcia Fernandez JM, Ortiz Mellet C. Pharmacological chaperone therapy for Gaucher disease: a patent review. Expert Opin Ther Pat 2011;21:885-903
  • Maegawa GHB, Tropak MB, Buttner JD, et al. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem 2009;284:23502-16
  • Weiser T. Ambroxol: a CNS drug? CNS Neurosci Ther 2008;14:17-24
  • Zimran A, Altarescu G, Elstein D. Pilot study using ambroxol as a pharmacological chaperone in type 1 Gaucher disease. Blood Cells Mol Dis 2013;50:134-7
  • Goker-Alpan O. Commentary on “Pilot study using ambroxol as a pharmacological chaperone in type 1 Gaucher disease” by Zimran et al. Blood Cells Mol Dis 2013;50:138-9
  • Barranger JA, Rice EO, Dunigan J, et al. Gaucher’s disease: studies of gene transfer to haematopoietic cells. Baillieres Clin Haematol 1997;10:765-78
  • Enquist IB, Nilsson E, Månsson J-E, et al. Successful low-risk hematopoietic cell therapy in a mouse model of type 1 Gaucher disease. Stem Cells 2009;27:744-52
  • Kim EY, Hong YB, Lai Z, et al. Expression and secretion of human glucocerebrosidase mediated by recombinant lentivirus vectors in vitro and in vivo: implications for gene therapy of Gaucher disease. Biochem Biophys Res Commun 2004;318:381-90
  • Diaz-Font A, Cormand B, Chabas A, et al. Unsuccessful chimeraplast strategy for the correction of a mutation causing Gaucher disease. Blood Cells Mol Dis 2003;31:183-6
  • McEachern KA, Nietupski JB, Chuang W-L, et al. AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease. J Gene Med 2006;8:719-29
  • Cox TM, Schofield JP. Gaucher’s disease: clinical features and natural history. Baillieres Clin Haematol 1997;10:657-89
  • Bemelmans A-P, Duque S, Riviere C, et al. A single intravenous AAV9 injection mediates bilateral gene transfer to the adult mouse retina. PLoS One 2013;8:e61618
  • Rahim AA, Wong AMS, Hoefer K, et al. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J 2011;25:3505-18
  • Korkotian E, Schwarz A, Pelled D, et al. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. Clin Immunol 1999;147:21673-8
  • Pelled D, Trajkovic-Bodennec S, Lloyd-Evans E, et al. Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol Dis 2005;18:83-8
  • Osellame LD, Rahim AA, Hargreaves IP, et al. Mitochondria and quality control defects in a mouse model of Gaucher disease – links to Parkinson’s disease. Cell Metab 2013;17:941-53
  • Farfel-Becker T, Vitner EB, Kelly SL, et al. Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet 2014;23:843-54
  • Ballabio A. Disease pathogenesis explained by basic science: lysosomal storage diseases as autophagocytic disorders. Int J Clin Pharmacol Ther 2009;47(Suppl 1):S34-8
  • Ridley CM, Thur KE, Shanahan J, et al. Beta-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem 2013;288:26052-66
  • Yildiz Y, Matern H, Thompson B, et al. Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 2006;116:2985-94
  • Citterio A, Arnoldi A, Panzeri E, et al. Mutations in CYP2U1, DDHD2 and GBA2 genes are rare causes of complicated forms of hereditary spastic paraparesis. J Neurol 2014;261:373-81
  • Martin E, Schüle R, Smets K, et al. Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet 2013;92:238-44
  • Hammer MB, Eleuch-Fayache G, Schottlaender LV, et al. Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet 2013;92:245-51
  • Mistry PK, Liu J, Sun L, et al. Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease. Proc Natl Acad Sci USA 2014;111:4934-9
  • Enquist IB, Nilsson E, Ooka A, et al. Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci USA 2006;103:13819-24
  • Mistry PK, Liu J, Yang M, et al. Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage. Proc Natl Acad Sci USA 2010;107:19473-8
  • Airola MV, Hannun YA. Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol 2013(215):57-76
  • Kitatani K, Sheldon K, Rajagopalan V, et al. Involvement of acid beta-glucosidase 1 in the salvage pathway of ceramide formation. J Biol Chem 2009;284:12972-8
  • Kitatani K, Sheldon K, Anelli V, et al. Acid beta-glucosidase 1 counteracts p38delta-dependent induction of interleukin-6: possible role for ceramide as an anti-inflammatory lipid. J Biol Chem 2009;284:12979-88
  • Yildiz Y, Hoffmann P, Dahl Vom S, et al. Functional and genetic characterization of the non-lysosomal glucosylceramidase 2 as a modifier for Gaucher disease. Orphanet J Rare Dis 2013;8:151
  • Vitner EB, Salomon R, Farfel-Becker T, et al. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat Med 2014;20:204-8
  • Moriwaki K, Chan FKM. Necrosis-dependent and independent signaling of the RIP kinases in inflammation. Cytokine Growth Factor Rev 2013;25:167-74
  • Moriwaki K, Chan FK-M. RIP3: a molecular switch for necrosis and inflammation. Genes Dev 2013;27:1640-9
  • Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol 2014;35C:14-23
  • Kanfer JN, Legler G, Sullivan J, et al. The Gaucher mouse. Biochem Biophys Res Commun 1975;67:85-90
  • Farfel-Becker T, Vitner EB, Futerman AH. Animal models for Gaucher disease research. Dis Model Mech 2011;4:746-52
  • Kaiser WJ, Sridharan H, Huang C, et al. Toll-like Receptor 3-mediated necrosis via TRIF, RIP3 and MLKL. J Biol Chem 2013;288(43):31268-79
  • Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012;148:213-27
  • Li J-X, Feng J-M, Wang Y, et al. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis 2014;5:e1278
  • Mittapalli RK, Vaidhyanathan S, Dudek AZ, et al. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther 2013;344:655-64
  • Chavez-Valdez R, Martin LJ, Flock DL, et al. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 2012;219:192-203
  • Rosenbaum DM, Degterev A, David J, et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 2010;88:1569-76
  • Trichonas G, Murakami Y, Thanos A, et al. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci USA 2010;107:21695-700
  • You Z, Savitz SI, Yang J, et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 2008;28:1564-73
  • Jagtap PG, Degterev A, Choi S, et al. Structure-activity relationship study of tricyclic necroptosis inhibitors. J Med Chem 2007;50:1886-95
  • Zhu S, Zhang Y, Bai G, et al. Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis 2011;2:e115
  • Re DB, Le Verche V, Yu C, et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 2014;81:1001-8
  • Tenev T, Bianchi K, Darding M, et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011;43:432-48
  • Lin Y, Devin A, Rodriguez Y, et al. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999;13:2514-26
  • Cho Y, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009;137:1112-23
  • He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009;137:1100-11
  • Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009;138:229-32
  • Vitner EB, Farfel-Becker T, Eilam R, et al. Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain 2012;135:1724-35
  • He S, Liang Y, Shao F, et al. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 2011;108:20054-9
  • Weng D, Marty-Roix R, Ganesan S, et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA 2014;111(20):7391-6
  • Hennessy EJ, Parker AE, O’Neill LAJ. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 2010;9:293-307
  • Thapa RJ, Nogusa S, Chen P, et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci USA 2013;110:E3109-18
  • Robinson N, McComb S, Mulligan R, et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 2012;13:954-62
  • Kirou KA, Gkrouzman E. Anti-interferon alpha treatment in SLE. Clin Immunol 2013;148:303-12
  • Kang T-B, Yang S-H, Toth B, et al. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 2013;38:27-40
  • Yang Y, Ma J, Chen Y, et al. Nucleocytoplasmic shuttling of receptor-interacting protein 3 (RIP3): identification of novel nuclear export and import signals in RIP3. J Biol Chem 2004;279:38820-9
  • Dondelinger Y, Declercq W, Montessuit S, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 2014;7:971-81
  • Wang H, Sun L, Su L, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 2014;54:133-46
  • Vince JE, Wong WW, Gentle I, et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 2012;36:215-27
  • Kovalenko A, Kim J-C, Kang T-B, et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 2009;206:2161-77
  • Lee P, Lee D-J, Chan C, et al. Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 2009;458:519-23
  • Kaiser WJ, Upton JW, Long AB, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 2011;471:368-72
  • Moll M, Kuemmerle-Deschner JB. Inflammasome and cytokine blocking strategies in autoinflammatory disorders. Clin Immunol 2013;147:242-75
  • Suzuki K, Taniike M. Murine model of genetic demyelinating disease: the twitcher mouse. Microsc Res Tech 1995;32:204-14
  • Enquist IB, Bianco Lo C, Ooka A, et al. Murine models of acute neuronopathic Gaucher disease. Proc Natl Acad Sci USA 2007;104:17483-8
  • Xu Y-H, Reboulet R, Quinn B, et al. Dependence of reversibility and progression of mouse neuronopathic Gaucher disease on acid beta-glucosidase residual activity levels. Mol Genet Metab 2008;94:190-203
  • Xu Y-H, Xu K, Sun Y, et al. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice. Hum Mol Genet 2014;23:3943-57
  • Tiscornia G, Vivas EL, Matalonga L, et al. Neuronopathic Gaucher’s disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Hum Mol Genet 2013;22:633-45
  • Aflaki E, Stubblefield BK, Maniwang E, et al. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs. Sci Transl Med 2014;6:240ra73
  • Panicker LM, Miller D, Park TS, et al. Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci USA 2012;109:18054-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.