295
Views
3
CrossRef citations to date
0
Altmetric
Review

FAK/Src family of kinases: protective or aggravating factor for ischemia reperfusion injury in nervous system?

, MD, , MD, , MD PhD, , MD PhD & , MD PhD

Bibliography

  • Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta 1996;1287(2-3):121-49
  • Lee BY, Timpson P, Horvath LG, Daly RJ. FAK Signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014:S0163-7258
  • Armendariz BG, Del Mar Masdeu M, Soriano E, et al. The diverse roles and multiple forms of focal adhesion kinase in brain. Eur J Neurosci 2014:00187-9. [Epub ahead of print]
  • Schwock J, Dhani N, Hedley DW. Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 2010;14(1):77-94
  • Qu H, Tu Y, Guan JL, et al. Kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch in the integrin outside-in signaling circuit. J Biol Chem 2014;289(45):31001-13
  • Ribeiro A, Balasubramanian S, Hughes D, et al. Beta1-Integrin cytoskeletal signaling regulates sensory neuron response to matrix dimensionality. Neuroscience 2013;248:67-78
  • Fang X, Liu X, Yao L, et al. New insights into FAK phosphorylation based on a FAT domain-defective mutation. PLoS One 2014;9(9):e107134
  • Bradbury P, Bach CT, Paul A, O’Neill GM. Src kinase determines the dynamic exchange of the docking protein NEDD9 (neural precursor cell expressed developmentally down-regulated gene 9) at focal adhesions. J Biol Chem 2014;289(36):24792-800
  • Deramaudt TB, Dujardin D, Noulet F, et al. Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes. PLoS One 2014;9(3):e92059
  • Kratimenos P, Koutroulis I, Marconi D, et al. Multi-targeted molecular therapeutic approach in aggressive neuroblastoma: the effect of Focal Adhesion Kinase-Src-Paxillin system. Expert Opin Ther Targets 2014;18(12):1395-406
  • Chan PH. Oxygen radicals in focal cerebral ischemia. Brain Pathol 1994;4(1):59-65
  • Chatzizacharias NA, Kouraklis GP, Theocharis SE. Disruption of FAK signaling: a side mechanism in cytotoxicity. Toxicology 2008;245(1-2):1-10
  • Kinouchi H, Epstein CJ, Mizui T, et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci USA 1991;88(24):11158-62
  • Han HY, Zhang JP, Ji SQ, et al. alphanu and beta1 integrins mediate Abeta-induced neurotoxicity in hippocampal neurons via the FAK signaling pathway. PLoS One 2013;8(6):e64839
  • Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004;4(3):181-9
  • Littauer A, de Groot H. Release of reactive oxygen by hepatocytes on reoxygenation: three phases and role of mitochondria. Am J Physiol 1992;262(6 Pt 1):G1015-20
  • McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312(3):159-63
  • Jaeschke H. Xanthine oxidase-induced oxidant stress during hepatic ischemia-reperfusion: are we coming full circle after 20 years? Hepatology 2002;36(3):761-3
  • Ben-Mahdi MH, Gozin A, Driss F, et al. Anethole dithiolethione regulates oxidant-induced tyrosine kinase activation in endothelial cells. Antioxid Redox Signal 2000;2(4):789-99
  • Toledo-Pereyra LH, Lopez-Neblina F, Toledo AH. Protein kinases in organ ischemia and reperfusion. J Invest Surg 2008;21(4):215-26
  • Yang S, Yip R, Polena S, et al. Reactive oxygen species increased focal adhesion kinase production in pulmonary microvascular endothelial cells. Proc West Pharmacol Soc 2004;47:54-6
  • Schlaepfer DD, Jones KC, Hunter T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 1998;18(5):2571-85
  • Lin EH, Hui AY, Meens JA, et al. Disruption of Ca2+-dependent cell-matrix adhesion enhances c-Src kinase activity, but causes dissociation of the c-Src/FAK complex and dephosphorylation of tyrosine-577 of FAK in carcinoma cells. Exp Cell Res 2004;293(1):1-13
  • Igishi T, Fukuhara S, Patel V, et al. Divergent signaling pathways link focal adhesion kinase to mitogen-activated protein kinase cascades. Evidence for a role of paxillin in c-Jun NH(2)-terminal kinase activation. J Biol Chem 1999;274(43):30738-46
  • Girault JA, Costa A, Derkinderen P, et al. FAK and PYK2/CAKbeta in the nervous system: a link between neuronal activity, plasticity and survival? Trends Neurosci 1999;22(6):257-63
  • Schlaepfer DD, Hunter T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol 1998;8(4):151-7
  • Tang K, Nie D, Cai Y, Honn KV. The beta4 integrin subunit rescues A431 cells from apoptosis through a PI3K/Akt kinase signaling pathway. Biochem Biophys Res Commun 1999;264(1):127-32
  • Tamura M, Gu J, Danen EH, et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 1999;274(29):20693-703
  • King WG, Mattaliano MD, Chan TO, et al. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 1997;17(8):4406-18
  • Zachary I, Rozengurt E. Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 1992;71(6):891-4
  • Sharma BK, Kumar K. Role of proinflammatory cytokines in cerebral ischemia: a review. Metab Brain Dis 1998;13(1):1-8
  • Richardson A, Parsons T. A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 1996;380(6574):538-40
  • Sigaut S, Jannier V, Rouelle D, et al. The preconditioning effect of sevoflurane on the oxygen glucose-deprived hippocampal slice: the role of tyrosine kinases and duration of ischemia. Anesth Analg 2009;108(2):601-8
  • Dahmani S, Tesniere A, Rouelle D, et al. Thiopental and isoflurane attenuate the decrease in hippocampal phosphorylated Focal Adhesion Kinase (pp125FAK) content induced by oxygen-glucose deprivation. Br J Anaesth 2004;93(2):270-4
  • Derkinderen P, Toutant M, Burgaya F, et al. Regulation of a neuronal form of focal adhesion kinase by anandamide. Science 1996;273(5282):1719-22
  • Zhou D, Song ZH. CB1 cannabinoid receptor-mediated tyrosine phosphorylation of focal adhesion kinase-related non-kinase. FEBS Lett 2002;525(1-3):164-8
  • Dahmani S, Tesniere A, Rouelle D, et al. Effects of anesthetic agents on focal adhesion kinase (pp125FAK) tyrosine phosphorylation in rat hippocampal slices. Anesthesiology 2004;101(2):344-53
  • Dalton GD, Peterson LJ, Howlett AC. CB(1) cannabinoid receptors promote maximal FAK catalytic activity by stimulating cooperative signaling between receptor tyrosine kinases and integrins in neuronal cells. Cell Signal 2013;25(8):1665-77
  • Dahmani S, Rouelle D, Gressens P, Mantz J. Effects of dexmedetomidine on hippocampal focal adhesion kinase tyrosine phosphorylation in physiologic and ischemic conditions. Anesthesiology 2005;103(5):969-77
  • Zalewska T, Ziemka-Nalecz M, Sarnowska A, Domanska-Janik K. Transient forebrain ischemia modulates signal transduction from extracellular matrix in gerbil hippocampus. Brain Res 2003;977(1):62-9
  • Ziemka-Nalecz M, Zalewska T. Transient forebrain ischemia effects FAK-coupled signaling in gerbil hippocampus. Neurochem Int 2007;51(6-7):405-11
  • Lesay A, Hickman JA, Gibson RM. Disruption of focal adhesions mediates detachment during neuronal apoptosis. Neuroreport 2001;12(10):2111-15
  • Ziemka-Nalecz M, Zalewska T, Zajac H, Domanska-Janik K. Decrease of PKC precedes other cellular signs of calpain activation in area CA1 of the hippocampus after transient cerebral ischemia. Neurochem Int 2003;42(3):205-14
  • Zhan RZ, Wu C, Fujihara H, et al. Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome c From mitochondria in a rat forebrain ischemia model. J Cereb Blood Flow Metab 2001;21(5):529-40
  • Neumar RW, Meng FH, Mills AM, et al. Calpain activity in the rat brain after transient forebrain ischemia. Exp Neurol 2001;170(1):27-35
  • Carragher NO, Fincham VJ, Riley D, Frame MC. Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem 2001;276(6):4270-5
  • Levkau B, Herren B, Koyama H, et al. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J Exp Med 1998;187(4):579-86
  • Shani V, Bromberg Y, Sperling O, Zoref-Shani E. Involvement of Src tyrosine kinases (SFKs) and of focal adhesion kinase (FAK) in the injurious mechanism in rat primary neuronal cultures exposed to chemical ischemia. J Mol Neurosci 2009;37(1):50-9
  • Wang Y, Kilic E, Kilic U, et al. VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 2005;128(Pt 1):52-63
  • Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 1998;18(8):887-95
  • Masson-Gadais B, Houle F, Laferriere J, Huot J. Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 2003;8(1):37-52
  • Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 2002;125(Pt 11):2549-57
  • van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999;104(11):1613-20
  • Burnett CA, Xie J, Quijano J, et al. Synthesis, in vitro, and in vivo characterization of an integrin alpha(v)beta(3)-targeted molecular probe for optical imaging of tumor. Bioorg Med Chem 2005;13(11):3763-71
  • Nisato RE, Tille JC, Jonczyk A, et al. alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 2003;6(2):105-19
  • Shimamura N, Matchett G, Yatsushige H, et al. Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 2006;37(7):1902-9
  • Kumai Y, Ooboshi H, Ibayashi S, et al. Postischemic gene transfer of soluble Flt-1 protects against brain ischemia with marked attenuation of blood-brain barrier permeability. J Cereb Blood Flow Metab 2007;27(6):1152-60
  • Eliceiri BP, Paul R, Schwartzberg PL, et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999;4(6):915-24
  • Paul R, Zhang ZG, Eliceiri BP, et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 2001;7(2):222-7
  • Law SF, Estojak J, Wang B, et al. Human enhancer of filamentation 1, a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol Cell Biol 1996;16(7):3327-37
  • Kumar S, Tomooka Y, Noda M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 1992;185(3):1155-61
  • Tachibana K, Urano T, Fujita H, et al. Tyrosine phosphorylation of Crk-associated substrates by focal adhesion kinase. A putative mechanism for the integrin-mediated tyrosine phosphorylation of Crk-associated substrates. J Biol Chem 1997;272(46):29083-90
  • Sasaki T, Iwata S, Okano HJ, et al. Nedd9 protein, a Cas-L homologue, is upregulated after transient global ischemia in rats: possible involvement of Nedd9 in the differentiation of neurons after ischemia. Stroke 2005;36(11):2457-62
  • Zalewska T, Makarewicz D, Janik B, Ziemka-Nalecz M. Neonatal cerebral hypoxia-ischemia: involvement of FAK-dependent pathway. Int J Dev Neurosci 2005;23(7):657-62
  • White BC, Sullivan JM, DeGracia DJ, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000;179(S1-2):1-33
  • Fujimoto S, Katsuki H, Kume T, et al. Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures. Neurosci Res 2004;50(2):179-87
  • Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 2004;61(6):657-68
  • Guo J, Meng F, Fu X, et al. N-methyl-D-aspartate receptor and L-type voltage-gated Ca2+ channel activation mediate proline-rich tyrosine kinase 2 phosphorylation during cerebral ischemia in rats. Neurosci Lett 2004;355(3):177-80
  • Liu Y, Zhang G, Gao C, Hou X. NMDA receptor activation results in tyrosine phosphorylation of NMDA receptor subunit 2A(NR2A) and interaction of Pyk2 and Src with NR2A after transient cerebral ischemia and reperfusion. Brain Res 2001;909(1-2):51-8
  • Liu Y, Hou XY, Zhang GY, Xu TL. L-type voltage-gated calcium channel attends regulation of tyrosine phosphorylation of NMDA receptor subunit 2A induced by transient brain ischemia. Brain Res 2003;972(1-2):142-8
  • Liu Y, Zhang GY, Hou XY, Xu TL. Two types of calcium channels regulating activation of proline-rich tyrosine kinase 2 induced by transient brain ischemia in rat hippocampus. Neurosci Lett 2003;348(3):127-30
  • Zablocka B, Maternicka K, Zalewska T, Domanska-Janik K. Expression of Ca2+-dependent (classical) PKC mRNA isoforms after transient cerebral ischemia in gerbil hippocampus. Brain Res 1998;779(1-2):254-8
  • Hu BR, Park M, Martone ME, et al. Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci 1998;18(2):625-33
  • Cheung HH, Takagi N, Teves L, et al. Altered association of protein tyrosine kinases with postsynaptic densities after transient cerebral ischemia in the rat brain. J Cereb Blood Flow Metab 2000;20(3):505-12
  • Pei L, Li Y, Yan JZ, et al. Changes and mechanisms of protein-tyrosine kinase and protein-tyrosine phosphatase activities after brain ischemia/reperfusion. Acta Pharmacol Sin 2000;21(8):715-20
  • Liu Y, Zhang GY, Yan JZ, Xu TL. Suppression of Pyk2 attenuated the increased tyrosine phosphorylation of NMDA receptor subunit 2A after brain ischemia in rat hippocampus. Neurosci Lett 2005;379(1):55-8
  • Ma J, Zhang GY, Liu Y, et al. Lithium suppressed Tyr-402 phosphorylation of proline-rich tyrosine kinase (Pyk2) and interactions of Pyk2 and PSD-95 with NR2A in rat hippocampus following cerebral ischemia. Neurosci Res 2004;49(4):357-62
  • Tang LJ, Li C, Hu SQ, et al. S-nitrosylation of c-Src via NMDAR-nNOS module promotes c-Src activation and NR2A phosphorylation in cerebral ischemia/reperfusion. Mol Cell Biochem 2012;365(1-2):363-77
  • Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997;385(6617):595-602
  • Huang Y, Lu W, Ali DW, et al. CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 2001;29(2):485-96
  • Hou XY, Zhang GY, Yan JZ, et al. Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia. Brain Res 2002;955(1-2):123-32
  • Nicodemo AA, Pampillo M, Ferreira LT, et al. Pyk2 uncouples metabotropic glutamate receptor G protein signaling but facilitates ERK1/2 activation. Mol Brain 2010;3:4
  • Chen M, Hou X, Zhang G. Tyrosine kinase and tyrosine phosphatase participate in regulation of interactions of NMDA receptor subunit 2A with Src and Fyn mediated by PSD-95 after transient brain ischemia. Neurosci Lett 2003;339(1):29-32
  • Xu J, Liu Y, Zhang GY. Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase. J Biol Chem 2008;283(43):29355-66
  • Tian D, Litvak V, Lev S. Cerebral ischemia and seizures induce tyrosine phosphorylation of PYK2 in neurons and microglial cells. J Neurosci 2000;20(17):6478-87
  • Corvol JC, Valjent E, Toutant M, et al. Depolarization activates ERK and proline-rich tyrosine kinase 2 (PYK2) independently in different cellular compartments in hippocampal slices. J Biol Chem 2005;280(1):660-8
  • Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 2001;11(3):336-42
  • Zalewska T, Ziemka-Nalecz M, Domanska-Janik K. Transient forebrain ischemia effects interaction of Src, FAK, and PYK2 with the NR2B subunit of N-methyl-D-aspartate receptor in gerbil hippocampus. Brain Res 2005;1042(2):214-23
  • Hou XY, Zhang GY, Yan JZ, Liu Y. Increased tyrosine phosphorylation of alpha(1C) subunits of L-type voltage-gated calcium channels and interactions among Src/Fyn, PSD-95 and alpha(1C) in rat hippocampus after transient brain ischemia. Brain Res 2003;979(1-2):43-50
  • Kandilis AN, Karidis NP, Kouraklis G, et al. Proteasome inhibitors: possible novel therapeutic strategy for ischemia-reperfusion injury? Expert Opin Investig Drugs 2014;23(1):67-80
  • Bisht B, Srinivasan K, Dey CS. In vivo inhibition of focal adhesion kinase causes insulin resistance. J Physiol 2008;586(16):3825-37
  • Gupta A, Bisht B, Dey CS. Focal adhesion kinase negatively regulates neuronal insulin resistance. Biochim Biophys Acta 2012;1822(6):1030-7
  • Scheele C, Nielsen AR, Walden TB, et al. Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration? FASEB J 2007;21(13):3653-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.