1,680
Views
98
CrossRef citations to date
0
Altmetric
Review

Blood–brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery

Bibliography

  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005;2(1):3-14
  • Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1999;1(1):55-68
  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000;44(1):235-49
  • Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 1998;165(3):201-11
  • Kageyama T, Nakamura M, Matsuo A, et al. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 2000;879(1-2):115-21
  • Dickens D, Webb SD, Antonyuk S, et al. Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol 2013;85(11):1672-83
  • Cornford EM, Young D, Paxton JW, et al. Melphalan penetration of the blood-brain barrier via the neutral amino acid transporter in tumor-bearing brain. Cancer Res 1992;52(1):138-43
  • Hediger MA, Clemencon B, Burrier RE, et al. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 2013;34(2-3):95-107
  • Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem 1990;265(29):18035-40
  • Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989;86(2):695-8
  • Boado RJ, Pardridge WM. Differential expression of alpha-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells. J Neurosci Res 1994;39(4):430-5
  • Pardridge WM, Yang J, Buciak J, et al. Human brain microvascular DR-antigen. J Neurosci Res 1989;23(3):337-41
  • Golden PL, Pardridge WM. P-Glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Res 1999;819(1-2):143-6
  • Pardridge WM, Yang J, Buciak JL, et al. Differential expression of 53- and 45-kDa brain capillary-specific proteins by brain capillary endothelium and choroid plexus in vivo and by brain capillary endothelium in tissue culture. Mol Cell Neurosci 1990;1(1):20-8
  • Schlachetzki F, Pardridge WM. P-glycoprotein and caveolin-1alpha in endothelium and astrocytes of primate brain. Neuroreport 2003;14(16):2041-6
  • Cornford EM, Hyman S, Cornford ME, et al. Glut1 glucose transporter activity in human brain injury. J Neurotrauma 1996;13(9):523-36
  • Pardridge WM, Triguero D, Yang J, et al. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J Pharmacol Exp Ther 1990;253(2):884-91
  • Urich E, Lazic SE, Molnos J, et al. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models. PLoS One 2012;7(5):e38149
  • Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 1971;221(6):1629-39
  • Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 1984;247(3 Pt 2):H484-93
  • Kakee A, Terasaki T, Sugiyama Y. Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther 1996;277(3):1550-9
  • Dwyer KJ, Pardridge WM. Developmental modulation of blood-brain barrier and choroid plexus GLUT1 glucose transporter messenger ribonucleic acid and immunoreactive protein in rabbits. Endocrinology 1993;132(2):558-65
  • Hoshi Y, Uchida Y, Tachikawa M, et al. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 2013;102(9):3343-55
  • Uchida Y, Ohtsuki S, Katsukura Y, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 2011;117(2):333-45
  • Pardridge WM, Oldendorf WH. Kinetics of blood-brain transport of hexoses. Biochim Biophys Acta 1975;382(3):377-92
  • Crane PD, Pardridge WM, Braun LD, et al. Kinetics of transport and phosphorylation of 2-fluoro-2-deoxy-D-glucose in rat brain. J Neurochem 1983;40(1):160-7
  • Cremer JE, Cunningham VJ. Effects of some chlorinated sugar derivatives on the hexose transport system of the blood/brain barrier. Biochem J 1979;180(3):677-9
  • Gerhart DZ, Enerson BE, Zhdankina OY, et al. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 1997;273(1 Pt 1):E207-13
  • Oldendorf WH. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol 1973;224(6):1450-3
  • Pardridge WM, Connor JD, Crawford IL. Permeability changes in the blood-brain barrier: causes and consequences. CRC Crit Rev Toxicol 1975;3(2):159-99
  • Cremer JE, Cunningham VJ, Pardridge WM, et al. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem 1979;33(2):439-45
  • Halestrap AP. Monocarboxylic acid transport. Compr Physiol 2013;3(4):1611-43
  • Kirk P, Wilson MC, Heddle C, et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 2000;19(15):3896-904
  • Uchida Y, Ohtsuki S, Terasaki T. Pharmacoproteomics-based reconstruction of in vivo P-glycoprotein function at blood-brain barrier and brain distribution of substrate verapamil in pentylenetetrazole-kindled epilepsy, spontaneous epilepsy, and phenytoin treatment models. Drug Metab Dispos 2014;42(10):1719-26
  • Pardridge WM, Oldendorf WH. Kinetic analysis of blood-brain barrier transport of amino acids. Biochim Biophys Acta 1975;401(1):128-36
  • Pardridge WM, Oldendorf WH. Transport of metabolic substrates through the blood-brain barrier. J Neurochem 1977;28(1):5-12
  • Pardridge WM. Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J Neurochem 1977;28(1):103-8
  • Kanai Y, Segawa H, Miyamoto K, et al. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 1998;273(37):23629-32
  • Boado RJ, Li JY, Nagaya M, et al. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci USA 1999;96(21):12079-84
  • Oldendorf WH, Szabo J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 1976;230(1):94-8
  • Smith QR, Momma S, Aoyagi M, et al. Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 1987;49(5):1651-8
  • Wade LA, Brady HM. Cysteine and cystine transport at the blood-brain barrier. J Neurochem 1981;37(3):730-4
  • Sanchez del Pino MM, Peterson DR, Hawkins RA. Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J Biol Chem 1995;270(25):14913-18
  • Stoll J, Wadhwani KC, Smith QR. Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J Neurochem 1993;60(5):1956-9
  • Oldendorf WH, Crane PD, Braun LD, et al. pH dependence of histidine affinity for blood-brain barrier carrier transport systems for neutral and cationic amino acids. J Neurochem 1988;50(3):857-61
  • Cornford EM, Braun LD, Oldendorf WH. Carrier mediated blood-brain barrier transport of choline and certain choline analogs. J Neurochem 1978;30(2):299-308
  • Michel V, Bakovic M. The ubiquitous choline transporter SLC44A1. Cent Nerv Syst Agents Med Chem 2012;12(2):70-81
  • Kido Y, Tamai I, Ohnari A, et al. Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-L-carnitine across the blood-brain barrier. J Neurochem 2001;79(5):959-69
  • Moriki Y, Suzuki T, Furuishi T, et al. In vivo evidence for the efflux transport of pentazocine from the brain across the blood-brain barrier using the brain efflux index method. J Drug Target 2005;13(1):53-9
  • Cornford EM, Oldendorf WH. Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim Biophys Acta 1975;394(2):211-19
  • Cass CE, Young JD, Baldwin SA. Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol 1998;76(5):761-70
  • Li JY, Boado RJ, Pardridge WM. Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2. J Cereb Blood Flow Metab 2001;21(8):929-36
  • Pardridge WM, Yoshikawa T, Kang YS, et al. Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs. J Pharmacol Exp Ther 1994;268(1):14-18
  • Berne RM, Knabb RM, Ely SW, et al. Adenosine in the local regulation of blood flow: a brief overview. Fed Proc 1983;42(15):3136-42
  • Wu PH, Phillis JW. Uptake of adenosine by isolated rat brain capillaries. J Neurochem 1982;38(3):687-90
  • Kosti V, Lambrinidis G, Myrianthopoulos V, et al. Identification of the substrate recognition and transport pathway in a eukaryotic member of the nucleobase-ascorbate transporter (NAT) family. PLoS One 2012;7(7):e41939
  • Agus DB, Gambhir SS, Pardridge WM, et al. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 1997;100(11):2842-8
  • O’Kane RL, Martinez-Lopez I, DeJoseph MR, et al. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 1999;274(45):31891-5
  • Pardridge WM. Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 1983;63(4):1481-535
  • Friesema EC, Ganguly S, Abdalla A, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003;278(41):40128-35
  • Sugiyama D, Kusuhara H, Taniguchi H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J Biol Chem 2003;278(44):43489-95
  • Li JY, Boado RJ, Pardridge WM. Blood-brain barrier genomics. J Cereb Blood Flow Metab 2001;21(1):61-8
  • Chu C, Li JY, Boado RJ, Pardridge WM. Blood-brain barrier genomics and cloning of a novel organic anion transporter. J Cereb Blood Flow Metab 2008;28(2):291-301
  • Pardridge WM. Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: primary role of albumin-bound hormone. Endocrinology 1979;105(3):605-12
  • Pardridge WM, Eisenberg J, Fierer G, et al. Developmental changes in brain and serum binding of testosterone and in brain capillary uptake of testosterone-binding serum proteins in the rabbit. Brain Res 1988;466(2):245-53
  • Mayerl S, Muller J, Bauer R, et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 2014;124(5):1987-99
  • Li JY, Boado RJ, Pardridge WM. Differential kinetics of transport of 2’,3’-dideoxyinosine and adenosine via concentrative Na+ nucleoside transporter CNT2 cloned from rat blood-brain barrier. J Pharmacol Exp Ther 2001;299(2):735-40
  • Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012;32(11):1959-72
  • Mejia AA, Nakamura T, Masatoshi I, et al. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med 1991;32:699-706
  • Inoue T, Shibasaki T, Oriuchi N, et al. 18F alpha-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med 1999;40:399-405
  • Pardridge WM. Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 1988;28:25-39
  • Ito K, Uchida Y, Ohtsuki S, et al. Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 2011;100(9):3939-50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.