980
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Role of sphingomyelinases in neurological disorders

, , , &

Bibliography

  • Schuchman EH. Acid sphingomyelinase, cell membranes and human disease: lessons from Niemann-Pick disease. FEBS Lett 2010;584(9):1895-900
  • Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004;82(1):27-44
  • Zajchowski LD, Robbins SM. Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. Eur J Biochem 2002;269(3):737-52
  • Lucero HA, Robbins PW. Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 2004;426(2):208-24
  • Farooqui AA. Lipid mediators and their metabolism in the brain. Springer-Verlag; New York: 2011
  • Barnholz Y, Roitman A, Gatt S. Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain. J Biol Chem 1966;241(16):3731-7
  • Samet D, Barenholz Y. Characterization of acidic and neutral sphingomyelinase activities in crude extracts of HL-60 cells. Chem Phys Lipids 1999;102(1-2):65-77
  • Grassme H, Jekle A, Riehle A, et al. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 2001;276(23):20589-96
  • Cremesti AE, Goni FM, Kolesnick R. Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 2002;531(1):47-53
  • Goni FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett 2002;531(1):38-46
  • Bollinger CR, Teichgraber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta 2005;1746(3):284-94
  • Chatterjee S. Neutral sphingomyelinase: past, present and future. Chem Phys Lipids 1999;102(1-2):79-96
  • Gatt S. Magnesium-dependent sphingomyelinase. Biochem Biophys Res Commun 1976;68(1):235-41
  • Rao BG, Spence MW. Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0. J Lipid Res 1976;17(5):506-15
  • Liu B, Hassler DF, Smith GK, et al. Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain. J Biol Chem 1998;273(51):34472-9
  • Liu B, Hannun YA. Purification of rat brain membrane neutral sphingomyelinase. Methods Enzymol 2000;311:156-64
  • Bernardo K, Krut O, Wiegmann K, et al. Purification and characterization of a magnesium-dependent neutral sphingomyelinase from bovine brain. J Biol Chem 2000;275(11):7641-7
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008;9(2):139-50
  • Verheij M, Bose R, Lin XH, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996;380(6569):75-9
  • Machleidt T, Wiegmann K, Henkel T, et al. Sphingomyelinase activates proteolytic I kappa B-alpha degradation in a cell-free system. J Biol Chem 1994;269(19):13760-5
  • Wiegmann K, Schutze S, Machleidt T, et al. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 1994;78(6):1005-15
  • Tepper CG, Jayadev S, Liu B, et al. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci USA 1995;92(18):8443-7
  • Adam-Klages S, Schwandner R, Adam D, et al. Distinct adapter proteins mediate acid versus neutral sphingomyelinase activation through the p55 receptor for tumor necrosis factor. J Leukoc Biol 1998;63(6):678-82
  • Wu BX, Rajagopalan V, Roddy PL, et al. Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J Biol Chem 2010;285(23):17993-8002
  • Garner AE, Smith DA, Hooper NM. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Mol Membr Biol 2007;24(3):233-42
  • London M, London E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 2004;279(11):9997-10004
  • Toops KA, Tan LX, Jiang Z, et al. Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 2015;26(1):1-14
  • Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene 2003;22(45):7070-7
  • Grassme H, Jendrossek V, Riehle A, et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 2003;9(3):322-30
  • Stratford S, Hoehn KL, Liu F, Summers SA. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 2004;279(35):36608-15
  • Farooqui A. Metabolic syndrome as a risk factor for alzheimer disease. Metabolic syndrome. Springer; New York: 2013. p. 281-341
  • Li X, Gulbins E, Zhang Y. Oxidative stress triggers Ca-dependent lysosome trafficking and activation of acid sphingomyelinase. Cell Physiol Biochem 2012;30(4):815-26
  • Zhang AY, Yi F, Jin S, et al. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 2007;9(7):817-28
  • Dumitru CA, Zhang Y, Li X, Gulbins E. Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid Redox Signal 2007;9(9):1535-40
  • Wei YM, Li X, Xiong J, et al. Attenuation by statins of membrane raft-redox signaling in coronary arterial endothelium. J Pharmacol Exp Ther 2013;345(2):170-9
  • Pinto SN, Silva LC, Futerman AH, Prieto M. Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim Biophys Acta 2011;1808(11):2753-60
  • Yu C, Alterman M, Dobrowsky RT. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. J Lipid Res 2005;46(8):1678-91
  • Kronke M. Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes. Chem Phys Lipids 1999;101(1):109-21
  • Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014;54:53-67
  • Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta 2009;1788(1):178-83
  • Domon M, Nasir MN, Matar G, et al. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 2012;69(11):1773-85
  • Goswami R, Ahmed M, Kilkus J, et al. Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2. J Neurosci Res 2005;81(2):208-17
  • Abe M, Kobayashi T. Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy. Biochim Biophys Acta 2014;1841(5):720-6
  • Eliyahu E, Park JH, Shtraizent N, et al. Acid ceramidase is a novel factor required for early embryo survival. FASEB J 2007;21(7):1403-9
  • Mizugishi K, Yamashita T, Olivera A, et al. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 2005;25(24):11113-21
  • Walls SMJr, Attle SJ, Brulte GB, et al. Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. PLoS Genet 2013;9(12):e1003970
  • Morad SA, Cabot MC. Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 2013;13(1):51-65
  • Hannun YA, Obeid LM. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 2002;277(29):25847-50
  • Raichur S, Wang ST, Chan PW, et al. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 2014;20(4):687-95
  • Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 2005;118(Pt 20):4605-12
  • Peest U, Sensken SC, Andreani P, et al. S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J Cell Biochem 2008;104(3):756-72
  • Cuvillier O. Sphingosine in apoptosis signaling. Biochim Biophys Acta 2002;1585(2-3):153-62
  • Mutoh T, Rivera R, Chun J. Insights into the pharmacological relevance of lysophospholipid receptors. Br J Pharmacol 2012;165(4):829-44
  • Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 2014;55(8):1596-608
  • Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 2012;22(1):50-60
  • Liu Y, Wada R, Yamashita T, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 2000;106(8):951-61
  • Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004;427(6972):355-60
  • Herr DR, Grillet N, Schwander M, et al. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci 2007;27(6):1474-8
  • Herr DR, Lee CW, Wang W, et al. Sphingosine 1-phosphate receptors are essential mediators of eyelid closure during embryonic development. J Biol Chem 2013;288(41):29882-9
  • Hait NC, Allegood J, Maceyka M, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009;325(5945):1254-7
  • Chun J, Brinkmann V. A mechanistically novel, first oral therapy for multiple sclerosis: the development of fingolimod (FTY720, Gilenya). Discov Med 2011;12(64):213-28
  • Choi JW, Gardell SE, Herr DR, et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA 2011;108(2):751-6
  • Fyrst H, Zhang X, Herr DR, et al. Identification and characterization by electrospray mass spectrometry of endogenous Drosophila sphingadienes. J Lipid Res 2008;49(3):597-606
  • Narayanaswamy P, Shinde S, Sulc R, et al. Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem 2014;86(6):3043-7
  • Herr DR, Fyrst H, Creason MB, et al. Characterization of the Drosophila sphingosine kinases and requirement for Sk2 in normal reproductive function. J Biol Chem 2004;279(13):12685-94
  • Fyrst H, Oskouian B, Bandhuvula P, et al. Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis. Cancer Res 2009;69(24):9457-64
  • Albi E, Lazzarini R, Viola Magni M. Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochem J 2008;410(2):381-9
  • Bartoccini E, Marini F, Damaskopoulou E, et al. Nuclear lipid microdomains regulate nuclear vitamin D3 uptake and influence embryonic hippocampal cell differentiation. Mol Biol Cell 2011;22(17):3022-31
  • Albi E, Cataldi S, Bartoccini E, et al. Nuclear sphingomyelin pathway in serum deprivation-induced apoptosis of embryonic hippocampal cells. J Cell Physiol 2006;206(1):189-95
  • Scassellati C, Albi E, Cmarko D, et al. Intranuclear sphingomyelin is associated with transcriptionally active chromatin and plays a role in nuclear integrity. Biol Cell 2010;102(6):361-75
  • Albi E, Lazzarini A, Lazzarini R, et al. Nuclear lipid microdomain as place of interaction between sphingomyelin and DNA during liver regeneration. Int J Mol Sci 2013;14(4):6529-41
  • Codini M, Cataldi S, Ambesi-Impiombato FS, et al. Gentamicin arrests cancer cell growth: the intriguing involvement of nuclear sphingomyelin metabolism. Int J Mol Sci 2015;16(2):2307-19
  • Ledeen RW, Wu G. Nuclear sphingolipids: metabolism and signaling. J Lipid Res 2008;49(6):1176-86
  • Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol 2008;9(2):162-76
  • Nakamura H, Wakita S, Suganami A, et al. Modulation of the activity of cytosolic phospholipase A2alpha (cPLA2alpha) by cellular sphingolipids and inhibition of cPLA2alpha by sphingomyelin. J Lipid Res 2010;51(4):720-8
  • Kitatani K, Akiba S, Hayama M, Sato T. Ceramide accelerates dephosphorylation of extracellular signal-regulated kinase 1/2 to decrease prostaglandin D(2) production in RBL-2H3 cells. Arch Biochem Biophys 2001;395(2):208-14
  • Kitatani K, Oka T, Murata T, et al. Acceleration by ceramide of calcium-dependent translocation of phospholipase A2 from cytosol to membranes in platelets. Arch Biochem Biophys 2000;382(2):296-302
  • Nodai A, Machida T, Izumi S, et al. Sphingosine 1-phosphate induces cyclooxygenase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci 2007;80(19):1768-76
  • Garcia-Marcos M, Pochet S, Marino A, Dehaye JP. P2X7 and phospholipid signalling: the search of the “missing link” in epithelial cells. Cell Signal 2006;18(12):2098-104
  • Farooqui AAF, Farooqui T, Horrocks LA. Metabolism and functions of bioactive ether lipids in the brain. Springer; New York: 2008
  • Latorre E, Collado MP, Fernandez I, et al. Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur J Biochem 2003;270(1):36-46
  • Farooqui AA, Horrocks LA. Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 2001;7(3):232-45
  • Vanags DM, Larsson P, Feltenmark S, et al. Inhibitors of arachidonic acid metabolism reduce DNA and nuclear fragmentation induced by TNF plus cycloheximide in U937 cells. Cell Death Differ 1997;4(6):479-86
  • Robinson BS, Hii CS, Poulos A, Ferrante A. Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 1997;91(2):274-80
  • Malaplate-Armand C, Florent-Bechard S, Youssef I, et al. Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 2006;23(1):178-89
  • Lang PA, Kempe DS, Tanneur V, et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci 2005;118(Pt 6):1233-43
  • Garcia-Martinez V, Montes MA, Villanueva J, et al. Sphingomyelin derivatives increase the frequency of microvesicle and granule fusion in chromaffin cells. Neuroscience 2015;295:117-25
  • Garcia-Martinez V, Villanueva J, Torregrosa-Hetland CJ, et al. Lipid metabolites enhance secretion acting on SNARE microdomains and altering the extent and kinetics of single release events in bovine adrenal chromaffin cells. PLoS One 2013;8(9):e75845
  • Rogasevskaia T, Coorssen JR. Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. J Cell Sci 2006;119(Pt 13):2688-94
  • Balosso S, Maroso M, Sanchez-Alavez M, et al. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 2008;131(Pt 12):3256-65
  • Yu Z, Cheng G, Wen X, et al. Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis 2002;11(1):199-213
  • He Y, Ong WY, Leong SK. Species differences in the distribution of the glutamate receptor subunit, GluR1, in the rat and monkey entorhinal cortex. J Hirnforsch 1997;38(1):27-33
  • Ong WY, He Y, Garey LJ. Localisation of glutamate receptors in the substantia nigra pars compacta of the monkey. J Hirnforsch 1997;38(3):291-8
  • Scandroglio F, Venkata JK, Loberto N, et al. Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. J Neurochem 2008;107(2):329-38
  • Galvan C, Camoletto PG, Cristofani F, et al. Anomalous surface distribution of glycosyl phosphatidyl inositol-anchored proteins in neurons lacking acid sphingomyelinase. Mol Biol Cell 2008;19(2):509-22
  • Hofmann K, Tomiuk S, Wolff G, Stoffel W. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci USA 2000;97(11):5895-900
  • Brann AB, Scott R, Neuberger Y, et al. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neurosci 1999;19(19):8199-206
  • Hirata H, Hibasami H, Yoshida T, et al. Nerve growth factor signaling of p75 induces differentiation and ceramide-mediated apoptosis in Schwann cells cultured from degenerating nerves. Glia 2001;36(3):245-58
  • Norman E, Cutler RG, Flannery R, et al. Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. J Neurochem 2010;114(2):430-9
  • Tabatadze N, Savonenko A, Song H, et al. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J Neurosci Res 2010;88(13):2940-51
  • Jeon HJ, Lee DH, Kang MS, et al. Dopamine release in PC12 cells is mediated by Ca(2+)-dependent production of ceramide via sphingomyelin pathway. J Neurochem 2005;95(3):811-20
  • Ahn KH, Kim SK, Choi JM, et al. Identification of Heat Shock Protein 60 as a Regulator of Neutral Sphingomyelinase 2 and Its Role in Dopamine Uptake. PLoS One 2013;8(6):e67216
  • Franco-Villanueva A, Fernandez-Lopez E, Gabande-Rodriguez E, et al. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes. Hum Mol Genet 2014;23(16):4383-95
  • Candalija A, Cubi R, Ortega A, et al. Trk receptors need neutral sphingomyelinase activity to promote cell viability. FEBS Lett 2014;588(1):167-74
  • Khodorova A, Nicol GD, Strichartz G. The p75NTR signaling cascade mediates mechanical hyperalgesia induced by nerve growth factor injected into the rat hind paw. Neuroscience 2013;254:312-23
  • Costantini C, Weindruch R, Della Valle G, Puglielli L. A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging. Biochem J 2005;391(Pt 1):59-67
  • Pehar M, Vargas MR, Robinson KM, et al. Mitochondrial superoxide production and nuclear factor erythroid 2-related factor 2 activation in p75 neurotrophin receptor-induced motor neuron apoptosis. J Neurosci 2007;27(29):7777-85
  • Plo I, Bono F, Bezombes C, et al. Nerve growth factor-induced protein kinase C stimulation contributes to TrkA-dependent inhibition of p75 neurotrophin receptor sphingolipid signaling. J Neurosci Res 2004;77(4):465-74
  • Sacket SJ, Chung HY, Okajima F, Im DS. Increase in sphingolipid catabolic enzyme activity during aging. Acta Pharmacol Sin 2009;30(10):1454-61
  • Babenko NA, Shakhova EG. Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain. Arch Gerontol Geriatr 2014;58(3):420-6
  • Babenko NA, Semenova YA. Effects of long-term fish oil-enriched diet on the sphingolipid metabolism in brain of old rats. Exp Gerontol 2010;45(5):375-80
  • Gallegos CE, Pediconi MF, Barrantes FJ. Ceramides modulate cell-surface acetylcholine receptor levels. Biochim Biophys Acta 2008;1778(4):917-30
  • Colon-Saez JO, Yakel JL. The alpha7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. J Physiol 2011;589(Pt 13):3163-74
  • Dontigny E, Patenaude C, Cyr M, Massicotte G. Sphingomyelinase selectively reduces M1 muscarinic receptors in rat hippocampal membranes. Hippocampus 2012;22(7):1589-96
  • Caccamo A, Oddo S, Billings LM, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 2006;49(5):671-82
  • Singh P, Chattopadhyay A. Removal of sphingomyelin headgroup inhibits the ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 2012;419(2):321-5
  • Barth BM, Gustafson SJ, Kuhn TB. Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-alpha. J Neurosci Res 2012;90(1):229-42
  • Wheeler D, Knapp E, Bandaru VV, et al. Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J Neurochem 2009;109(5):1237-49
  • Davis CN, Tabarean I, Gaidarova S, et al. IL-1beta induces a MyD88-dependent and ceramide-mediated activation of Src in anterior hypothalamic neurons. J Neurochem 2006;98(5):1379-89
  • Tsakiri N, Kimber I, Rothwell NJ, Pinteaux E. Interleukin-1-induced interleukin-6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. Br J Pharmacol 2008;153(4):775-83
  • Crivello NA, Rosenberg IH, Dallal GE, et al. Age-related changes in neutral sphingomyelin-specific phospholipase C activity in striatum, hippocampus, and frontal cortex: implication for sensitivity to stress and inflammation. Neurochem Int 2005;47(8):573-9
  • Nikolova-Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 2008;49:469-86
  • Goswami R, Singh D, Phillips G, et al. Ceramide regulation of the tumor suppressor phosphatase PTEN in rafts isolated from neurotumor cell lines. J Neurosci Res 2005;81(4):541-50
  • Jana A, Pahan K. Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci 2004;24(43):9531-40
  • Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319(5867):1244-7
  • Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 2015;290(6):3455-67
  • Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 2015;290(6):3455-67
  • Aureli M, Gritti A, Bassi R, et al. Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 2012;37(6):1344-54
  • Aureli M, Gritti A, Bassi R, et al. Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 2012;37(6):1344-54
  • Wang G, Krishnamurthy K, Chiang YW, et al. Regulation of neural progenitor cell motility by ceramide and potential implications for mouse brain development. J Neurochem 2008;106(2):718-33
  • Schwarz A, Futerman AH. Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth. J Neurosci 1997;17(9):2929-38
  • He Q, Wang G, Wakade S, et al. Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide. Mol Biol Cell 2014;25(11):1715-29
  • Gu L, Huang B, Shen W, et al. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J Neuroinflammation 2013;10:109
  • van Doorn R, Nijland PG, Dekker N, et al. Fingolimod attenuates ceramide-induced blood-brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathol 2012;124(3):397-410
  • Lu FG, Wong CS. Radiation-induced apoptosis of oligodendrocytes and its association with increased ceramide and down-regulated protein kinase B/Akt activity. Int J Radiat Biol 2004;80(1):39-51
  • Qin J, Testai FD, Dawson S, et al. Oxidized phosphatidylcholine formation and action in oligodendrocytes. J Neurochem 2009;110(5):1388-99
  • Tawadros PS, Powers KA, Ailenberg M, et al. Oxidative stress increases surface toll-like receptor 4 expression in murine macrophages via ceramide generation. Shock 2015. [Epub ahead of print]
  • Nayak D, Huo Y, Kwang WX, et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 2010;166(1):132-44
  • Kelly L, Grehan B, Chiesa AD, et al. The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat. Neurobiol Aging 2011;32(12):2318 e1-15
  • De Palma C, Meacci E, Perrotta C, et al. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol 2006;26(1):99-105
  • Li YQ, Chen P, Haimovitz-Friedman A, et al. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 2003;63(18):5950-6
  • Simonis A, Hebling S, Gulbins E, et al. Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells. PLoS Pathog 2014;10(6):e1004160
  • Yang DI, Yeh CH, Chen S, et al. Neutral sphingomyelinase activation in endothelial and glial cell death induced by amyloid beta-peptide. Neurobiol Dis 2004;17(1):99-107
  • Li X, Han WQ, Boini KM, et al. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice. J Mol Med 2013;91(1):25-36
  • Lee JT, Peng GS, Chen SY, et al. Homocysteine induces cerebral endothelial cell death by activating the acid sphingomyelinase ceramide pathway. Prog Neuropsychopharmacol Biol Psychiatry 2013;45:21-7
  • Opreanu M, Tikhonenko M, Bozack S, et al. The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models. Diabetes 2011;60(9):2370-8
  • Tikhonenko M, Lydic TA, Opreanu M, et al. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS One 2013;8(1):e55177
  • Ehehalt R, Sparla R, Kulaksiz H, et al. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts). BMC Cell Biol 2008;9:45
  • Abdel Shakor AB, Atia MM, Kwiatkowska K, Sobota A. Cell surface ceramide controls translocation of transferrin receptor to clathrin-coated pits. Cell Signal 2012;24(3):677-84
  • Ong WY, Farooqui AA. Iron, neuroinflammation, and Alzheimer’s disease. J Alzheimer’s Dis 2005;8(2):183-200; discussion 09-15
  • Wang XS, Ong WY, Connor JR. Increase in ferric and ferrous iron in the rat hippocampus with time after kainate-induced excitotoxic injury. Exp Brain Res 2002;143(2):137-48
  • Ledesma MD, Prinetti A, Sonnino S, Schuchman EH. Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem 2011;116(5):779-88
  • Camoletto PG, Vara H, Morando L, et al. Synaptic vesicle docking: sphingosine regulates syntaxin1 interaction with Munc18. PLoS One 2009;4(4):e5310
  • Arroyo AI, Camoletto PG, Morando L, et al. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model. EMBO Mol Med 2014;6(3):398-413
  • Trovo L, Stroobants S, D’Hooge R, et al. Improvement of biochemical and behavioral defects in the Niemann-Pick type A mouse by intraventricular infusion of MARCKS. Neurobiol Dis 2015;73:319-26
  • Gabande-Rodriguez E, Boya P, Labrador V, et al. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 2014;21(6):864-75
  • Buccinna B, Piccinini M, Prinetti A, et al. Alterations of myelin-specific proteins and sphingolipids characterize the brains of acid sphingomyelinase-deficient mice, an animal model of Niemann-Pick disease type A. J Neurochem 2009;109(1):105-15
  • Chiulli N, Codazzi F, Di Cesare A, et al. Sphingosylphosphocholine effects on cultured astrocytes reveal mechanisms potentially involved in neurotoxicity in Niemann-Pick type A disease. Eur J Neurosci 2007;26(4):875-81
  • Gulbins E, Walter S, Becker KA, et al. A central role for the acid sphingomyelinase/ceramide system in neurogenesis and major depression. J Neurochem 2015;134(2):183-92
  • Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 2013;31(6):761-77
  • Kornhuber J, Medlin A, Bleich S, et al. High activity of acid sphingomyelinase in major depression. J Neural Transm 2005;112(11):1583-90
  • Gulbins E, Palmada M, Reichel M, et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med 2013;19(7):934-8
  • He X, Huang Y, Li B, et al. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 2010;31(3):398-408
  • Dias IH, Mistry J, Fell S, et al. Oxidized LDL lipids increase beta-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation. Free Radic Biol Med 2014;75:48-59
  • Lee JK, Jin HK, Park MH, et al. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease. J Exp Med 2014;211(8):1551-70
  • Fonteh AN, Ormseth C, Chiang J, et al. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer’s disease. PLoS One 2015;10(5):e0125597
  • Panchal M, Gaudin M, Lazar AN, et al. Ceramides and sphingomyelinases in senile plaques. Neurobiol Dis 2014;65:193-201
  • Ju TC, Chen SD, Liu CC, Yang DI. Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity. Free Radic Biol Med 2005;38(7):938-49
  • Hsu MJ, Sheu JR, Lin CH, et al. Mitochondrial mechanisms in amyloid beta peptide-induced cerebrovascular degeneration. Biochim Biophys Acta 2010;1800(3):290-6
  • Shelat PB, Chalimoniuk M, Wang JH, et al. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 2008;106(1):45-55
  • Sagy-Bross C, Hadad N, Levy R. Cytosolic phospholipase A2alpha upregulation mediates apoptotic neuronal death induced by aggregated amyloid-beta peptide1-42. Neurochem Int 2013;63(6):541-50
  • Desbene C, Malaplate-Armand C, Youssef I, et al. Critical role of cPLA2 in Abeta oligomer-induced neurodegeneration and memory deficit. Neurobiol Aging 2012;33(6):1123 e17-29
  • Yuyama K, Sun H, Mitsutake S, Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 2012;287(14):10977-89
  • Dinkins MB, Dasgupta S, Wang G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 2014;35(8):1792-800
  • Jana A, Pahan K. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 2010;30(38):12676-89
  • Wang G, Dinkins M, He Q, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 2012;287(25):21384-95
  • Alessenko AV, Bugrova AE, Dudnik LB. Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer’s disease. Biochem Soc Trans 2004;32(Pt 1):144-6
  • Liu L, Martin R, Chan C. Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol Aging 2013;34(2):540-50
  • Lee JT, Xu J, Lee JM, et al. Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 2004;164(1):123-31
  • Zeng C, Lee JT, Chen H, et al. Amyloid-beta peptide enhances tumor necrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem 2005;94(3):703-12
  • Chen S, Lee JM, Zeng C, et al. Amyloid beta peptide increases DP5 expression via activation of neutral sphingomyelinase and JNK in oligodendrocytes. J Neurochem 2006;97(3):631-40
  • Ayasolla K, Khan M, Singh AK, Singh I. Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med 2004;37(3):325-38
  • Testai FD, Xu HL, Kilkus J, et al. Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. J Neurosci Res 2015;93(5):796-805
  • Yu ZF, Nikolova-Karakashian M, Zhou D, et al. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci2000;15(2):85-97
  • Ohtani R, Tomimoto H, Kondo T, et al. Upregulation of ceramide and its regulating mechanism in a rat model of chronic cerebral ischemia. Brain Res 2004;1023(1):31-40
  • Tian HP, Qiu TZ, Zhao J, et al. Sphingomyelinase-induced ceramide production stimulate calcium-independent JNK and PP2A activation following cerebral ischemia. Brain Inj 2009;23(13-14):1073-80
  • Feng Y, LeBlanc MH. N-tosyl-L-phenylalanyl-chloromethyl ketone reduces ceramide during hypoxic-ischemic brain injury in newborn rat. Eur J Pharmacol 2006;551(1-3):34-40
  • Sun X, Liu C, Qian M, et al. Ceramide from sphingomyelin hydrolysis differentially mediates mitogen-activated protein kinases (MAPKs) activation following cerebral ischemia in rat hippocampal CA1 subregion. J Biomed Res 2010;24(2):132-7
  • Novgorodov SA, Gudz TI. Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol 2011;2(4):347-61
  • Tang N, Ong WY, Yeo JF, Farooqui AA. Anti-allodynic effect of intracerebroventricularly administered antioxidant and free radical scavenger in a mouse model of orofacial pain. J Orofac Pain 2009;23(2):167-73
  • Ndengele MM, Cuzzocrea S, Masini E, et al. Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther 2009;329(1):64-75
  • Ritter JK, Fang Y, Xia M, et al. Contribution of acid sphingomyelinase in the periaqueductal gray region to morphine-induced analgesia in mice. Neuroreport 2012;23(13):780-5
  • Yan X, Weng HR. Endogenous interleukin-1beta in neuropathic rats enhances glutamate release from the primary afferents in the spinal dorsal horn through coupling with presynaptic N-methyl-D-aspartic acid receptors. J Biol Chem 2013;288(42):30544-57
  • Kobayashi Y, Kiguchi N, Maeda T, et al. The critical role of spinal ceramide in the development of partial sciatic nerve ligation-induced neuropathic pain in mice. Biochem Biophys Res Commun 2012;421(2):318-22
  • Jana A, Pahan K. Sphingolipids in multiple sclerosis. Neuromolecular Med 2010;12(4):351-61
  • Fantini J, Garmy N, Mahfoud R, Yahi N. Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med 2002;4(27):1-22
  • Palsdottir H, Hunte C. Lipids in membrane protein structures. Biochim Biophys Acta 2004;1666(1-2):2-18
  • Kornhuber J, Tripal P, Reichel M, et al. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 2010;26(1):9-20
  • Kornhuber J, Muehlbacher M, Trapp S, et al. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS One 2011;6(8):e23852
  • Figuera-Losada M, Stathis M, Dorskind JM, et al. Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One 2015;10(5):e0124481

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.