511
Views
108
CrossRef citations to date
0
Altmetric
Review

The bacterial cell wall as a source of antibacterial targets

Pages 1-20 | Published online: 25 Feb 2005

Bibliography

  • HALLS G: The complete guide to anti-infectives. In: Scripp Reports. Richmond, Surrey UK (Ed.), PJB Publications (1999).
  • SCHMID MB, KAPUR N, ISAACSON DR, LINDROOS P, SHARPE C: Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimutium. Genetics (1989) 123:625–633.
  • BERG CM, BERG DA: Transposable element tools for microbial genetics. In: Escherichia coil and Salmonella. Neidhardt FC (Ed.): ASM Press (1996): 588–2612.
  • JI Y, ZHANG B, VAN SF et al.: Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science (2001) 293:2266–2269.
  • STOVER CK, PRAM XQ, ERWIN ALet al: Complete genome sequence of Pseudamortas aeruginasa PA01, an opportunistic pathogen. Nature (2000) 406:959–964.
  • PERNA NT, PLUNKETT G 3RD, BURLAND V et al.: Genome sequence of enterohaemorrhagic Escherichia coil 0157:H7. Nature (2001) 409:529–533.
  • KURODA M, OHTA T, UCHIYAMA I et al: Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet (2001) 357:1225–1240.
  • HOSKINS J, ALBORN WE JR., ARNOLD J et al.: Genome of the Bacterium Streptococcus prieumaniae Strain R6.1. Bacterial (2001) 183:5709–5717.
  • PAYNE DJ, WALLIS NG, GENTRY DR, ROSENBERG M: The impact of genomics on novel antibacterial targets. Curr. Opirt. Drug Discov (2000) 3:177–190.
  • •Review of antibacterial targets including peptidoglycan biosynthesis enzymes.
  • SEARLS D: Using bioinformatics in gene and drug discovery. Drug Discov. Today (2000) 5:135–143.
  • MOIR DT, SHAW KJ, HARE RS, VOVIS GF: Genomics and antimicrobial drug discovery. Antimicrob. Agents Chemother. (1999) 43:439–446.
  • •Review of antibacterial target selection using genomics. Includes intemet links.
  • LOFERER H: Mining bacterial genomes for antimicrobial targets. Mal Med. Today (2000) 6:470–474.
  • CHRISTENDAT D, YEE A, DHARAMSI A et al: Structural proteomics of an archaeon. Nat. Struct. Biol. (2000) 7:903–909.
  • GOODWILL KE, TENNANT MG, STEVENS RC: High throughput x-ray crystallography for structure-based drug design. Drug Discov.Today (2001) 6:S113–S118.
  • •Good summary of automating structural biology for drug discovery.
  • SCHAECHTER M: Biology of infectious agents. In: Mechanisms of Microbial Disease Ord Edition). Schaechter M, Engleberg NC, Eisenstein BI, Medoff G (Eds.), Lippincott Williams & Wilkins (1989):18–38.
  • ••Good chapter in an excellent textbookcovering microbial disease.
  • BOUHSS A, JOSSEAUME N, ALLANIC D etal.: Identification of the UDP-MurNAc-pentapeptidel-alanine ligase for synthesis of branched peptidoglycan precursors in Enterocaccus faecalis. J Bacterial (2001) 183:5122–5127.
  • GHUYSEN JM: Serine beta-lactamases and penicillin-binding proteins. Ann. Rev Microbial (1991) 45:37–67.
  • MASSOVA I, MOBASHERY S: Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chernother. (1998) 42:1–17.
  • NELSON DE, YOUNG KD: Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli J. Bacterial (2000) 182: 1714-1721.
  • DENOME SA, ELF PK, HENDERSON TA, NELSON DE, YOUNG KD: Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. j Bacterial. (1999) 181:3981–3993.
  • VAN HEIJENOORT J: Formation of theglycan chains in the synthesis of bacterial peptidoglycan. Glycabialogy (2001) 11:25R–36R.
  • WANG QM, PEERY RB, JOHNSON RB, ALBORN WE, YEH W-K, SKATRUD PL: Identification and characterization of a monofunctional glycosyltransferase from Staphylococcus aureus. j Bacterial (2001) 183:4779–4785.
  • GOFFIN C, GHUYSEN J-M: Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. 11/licrobial. Mal Biol. Rev. (1998) 62:1079–1093.
  • SCHLEIFER KH, KANDLER O: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacterial Rev (1972) 36:407–477.
  • DESSEN A, MOUZ N, HOPKINS J, DIDEBERG O: Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus prieumartiae clinical isolate: A mosaic framework containing 83 mutations. Biol. Chem. (2001) 276:45106–12.
  • •Accepted manuscript providing structural interpretation of penicillin resistance through mutations in PBP2x.
  • DOWSON CG, HUTCHISON A, BRANNIGAN JA etal.: Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus prieumartiae. Proc. Nail. Acad. Sci. USA (1989) 86:8842–8846.
  • SPRATT BG: Resistance to antibiotics mediated by target alterations. Science (1994) 264:388–393.
  • SEVERIN A, FIGUEIREDO A, TOMASZ A: Separation of abnormal cell wall composition from penicillin resistance through genetic transformation of Streptococcus prieumartiae. I Bacterial (1996) 178:1788–1792.
  • FILIPE SR, PINHO MG, TOMASZ A: Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus prieumartiae. j Biol. Chem. (2000) 275:27768–27774.
  • FILIPE SR, TOMASZ A: Inhibition of theexpression of penicillin resistance in Streptococcus prieumartiae by inactivation of cell wall muropeptide branching genes. Proc. Natl. Acad. Sci. USA (2000) 97:4891–4896.
  • BUSH K, JACOBY G, MEDEIROS A: A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. (1995) 39:1211–1233.
  • ••Good review of P-lactamases.
  • MILLER LA, RATNAM K, PAYNE DJ: P-lactamase-inhibitor combinations in the 21st century: current agents and new developments. Curr. Opirt. Pharmacy]. (2001) 1:451–458.
  • ••Good review of a drug combinationapproach to overcoming P-lactam resistance. Expert Op/n. Ther. Targets (2002) 6(1)
  • BLANPAIN PC, NAGY JB, LAURENTGH, DURANT FV: A multifaceted approach to the study of the side-chain conformation in beta-lactamase-resistant penicillins. J. Med. Chem. (1980) 23:1283–1292.
  • HEDGE PJ, SPRATT BG: Amino acid substitutions that reduce the affinity of penicillin-binding protein 3 of Escherichia coil for cephalexin. Eur. j Biochem. (1985) 151:111–121.
  • PINHO MG, DE LENCASTRE H, TOMASZ A: An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant Staphylococci. Proc. Natl. Acad. Sci. USA (2001) 183:6525–31.
  • CARSENTI ETESSE H, CAVALLO JD, ROGER PM: Effect of beta-lactam antibiotics on the in vitro development of resistance in Pseudomorras aerugirrosa. Microbial. Infect. (2001) 7:144–151.
  • MOSSAKOWSKA D, ALI NA, DALE JW:Oxacillin-hydrolysing beta-lactamases. A comparative analysis at nucleotide and amino acid sequence levels. Eur. j Biochem. (1989) 180:309–318.
  • SWAREN P, GOLEMI D, CABANTOUS S: X-ray structure of the Asn276Asp variant of the Escherichia coil TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid. Biochemistry (1999) 38:9570–9576.
  • WESTON GS, BLAZQUEZ J, BAQUERO F, SHOICHET BK: Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase. j Med. Chem. (1998) 41:4577–4586.
  • PATERA A, BLASZCZAK LC, SHOICHET B: Crystal structures of substrate and inhibitor complexes with ampC P-lactamase: possible implications for substrate-assisted catalysis. j Am. Chem. Soc. (2000) 122:10504–10512.
  • TONDI D, POWERS RA, CASELLI E et al: Structure-based design and in-parallel synthesis of inhibitors of AmpC beta-lactamase. Chem. Biol. (2001) 8:593–611.
  • NESS S, MARTIN R, KINDLER AM et al.: Structure-based design guides the improved efficacy of deacylation transition state analogue inhibitors of TEM-1 beta-Lactamase. Biochemistry (2000) 39:5312–5321.
  • MAVEYRAUD L, PRATT RE SAMAMA JP: Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases. Biochemistry (1998) 37:2622–2628.
  • CONCHA NO, JANSON CA, ROWLING P et al.: Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomorras aerugirrosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry (2000) 39:4288–4298.
  • LEE W, MCDONOUGH MA, KOTRA L et al.: A 1.2A snapshot of the final step of bacterial cell wall biosynthesis. Proc. Nati Acad. Sci. USA (2001) 98:1427–1431.
  • •Structure of a unique cephalosporin bound to a PBP that provides insight into transpeptidation mechanism and transpeptidaseilactamase selectivity.
  • GROVES P, SEARLE MS, MACKAY JP,WILLIAMS DH: The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics. Structure (1994) 2:747–754.
  • BUGG TD, WRIGHT GD, DUTKA-MALEN S et al.: Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins vanH and vanA. Biochemistry (1991) 30:10408–10415.
  • WALSH CT: Vancomycin resistance: decoding the molecular logic. Science (1993) 261:308–309.
  • •Review of vancomycin mechanism of action and resistance.
  • LESSARD IA, WALSH CT: VanX: a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc. Natl. Acad. Sci USA (1999) 96:11028–11032.
  • CHIOSIS G, BONECA IG: Selective cleavage of D-Ala-D-Lac by small molecules: re-sensitizing resistant bacteria to vancomycin. Science (2001) 293:1484–1487.
  • •Novel approach to overcoming vancomycin resistance.
  • XU R, GREIVELDINGER G, MARENUS LE, COOPER A, ELLMAN JA: Combinatorial library approach for the identification of synthetic receptors targeting vancomycin-resistant bacteria. Am. Chem. Soc. (1999) 121:4898–4899.
  • GOLD HS, MOELLERING RC: Antimicrobial-drug resistance. N Engl. Med. (1996) 335:1445–1453.
  • BEAUREGARD DA, WILLIAMS DH, GWYNN MN, KNOWLES DJ: Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob. Agents Chemother. (1995) 39:781–785.
  • WESTWELL MS, GERHARD U, WILLIAMS DH: Two conformers of the glycopeptide antibiotic teicoplanin with distinct ligand binding sites. j Antibiot. (Tokyo) (1995) 48:1292–1298.
  • SCHWALBE RS, MCINTOSH AC, QAIYUMI S et al.: In vitro activity of LY333328, an investigational glycopeptide antibiotic, against enterococci and staphylococci. Antimicrob. Agents Chemother. (1996) 40:2416–2419.
  • JONES RN, BARRETT MS, ERWIN ME: In vitro activity and spectrum of LY333328, a novel glycopeptide derivative. Antimicrob. Agents Chemother. (1997) 41:488–493.
  • SUNDRAM UM, GRIFFIN JH, NICAS TI: Novel vancomycin dimers with activity against vancomycin-resistant enterococci. j Am. Chem. Soc. (1996) 118:13107–13108.
  • ZELENITSKY SA, KARLOWSKY JA, ZHANEL GG, HOBAN DJ, NICAS T: Time-kill curves for a semisynthetic glycopeptide, LY333328, against vancomycin-susceptible and vancomycin-resistant Enterococcus faecium strains. Antimicrob. Agents Chemother. (1997) 41:1407–1408.
  • BALTCH AL, SMITH RP, RITZ WJ, BOPP LH: Comparison of inhibitory and bactericidal activities and postantibiotic effects of LY333328 and ampicillin used singly and in combination against vancomycin-resistant Enterococcus faecium. Antimicrob. Agents Chemother. (1998) 42:2564–2568.
  • KERNS R, DONG SD, FUKUZAWA S et al.: The role of hydrocarbon substituents in the biological activity of glycopeptide antibiotics. j Am. Chem. Soc. (2000) 122:12608–12609.
  • GEM, CHEN Z, ONISHI HR et a/.: Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science (1999) 284:507–511.
  • ••Excellent description of developingglycopeptides from vancomycin that inhibit transglycosylation rather than transpeptidation.
  • EGGERT US, RUIZ N, FALCONE BV et al: Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science (2001):294:361–4.
  • WIEDEMANN I, BREUKINK E, VAN KRAAIJ C et al: Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. I Biol. Chem. (2001) 276:1772–1779.
  • BROTZ H, BIERBAUM G, LEOPOLD K, REYNOLDS PE, SAHL H-G: The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. (1998) 42:154–160.
  • SOFIA MJ, ALLANSON N, HATZENBUHLER NT et al: Discovery of novel disaccharide antibacterial agents using a combinatorial library approach. I Med. Chem. (1999) 42:3193–3198.
  • BAIZMAN ER, BRANSTROM AA, LONGLEY CB et al: Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. 11/licrobialogy (2000) 146:3129–3140.
  • YE X-Y, LO M-C, BRUNNER L, WALKER D, KAHNE D, WALKERS: Better substrates for bacterial transglycosylases. I Am. Chem. Soc. (2001) 123:3155–3156.
  • VOLLMER W, HOLTJE J-V: A simple screen for murein transglycosylase inhibitors. Antimicrob. Agents Chemother. (2000) 44:1181–1185.
  • BERNHARDT TG, WANG IN, STRUCK DK, YOUNG R: A protein antibiotic in the phage Qbeta virion: diversity in lysis targets. Science (2001) 292:2326–2329.
  • WANKE C, AMRHEIN N: Evidence that the reaction of the UDP-N-acetylglucoamine 1-carboxyvinyltransferase proceeds through the 0-phosphothioketal of pyruvic acid bound to Cys115 of the enzyme. Eur. I Biochem. (1993) 218:861–870.
  • MARQUARDT JL, BROWN ED, LANE WS et al: Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNAc enolpyruvoyl transferase by the antibiotic fosfomycin. Biochemistry (1994) 33:10646–10651.
  • KAHAN FM, KAHAN JS, CASSIDY PJ, KROPP H: The mechanism of action of fosfomycin (phosphonomycin). Ann. NY Acad. Li. (1974) 235:364–386.
  • INUKAI M, ISONO E TAKATSUKI A: Selective inhibition of the bacterial translocase reaction in peptidoglycan synthesis by mureidomycins. Antimicrob. Agents Chemother. (1993) 37:980–983.
  • ISONO 1 INUKAI M: Mureidomycin A, a new inhibitor of bacterial peptidoglycan synthesis. Antimicrob. Agents Chemother. (1991) 35:234–236.
  • KIMURA K, IKEDA Y, KAGAMI S et al: Selective inhibition of the bacterial peptidoglycan biosynthesis by the new types of liposidomycins. I Antibior (Tokyo) (1998) 51:1099–1104.
  • BRANDISH PE, KIMURA KI, INUKAI M, SOUTHGATE R, LONSDALE JT, BUGG TD: Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coil. Antimicrob. Agents Chemother. (1996) 40:1640–1644.
  • BOYLE DS, DONACHIE WD: mraY is an essential gene for cell growth in Escherichia coll. I Bacterial (1998) 180:6429–6432.
  • DOMBROSKY PM, SCHMID MB, YOUNG KD: Sequence divergence of the murB and rrfB genes from Escherichia coil and Salmonella gphimutium. Arch. Microbial (1994) 161:501–507.
  • JANA M, LUONG TT, KOMATSUZAWA H, SHIGETA M, LEE CY: A method for demonstrating gene essentiality in Staphylococcus aureus. Plasmid (2000) 44:100–104.
  • MENGIN-LECREULX D, VAN HEIJENOORT J: Identification of the glmU gene encoding N-acetylglucosamine-l-phosphate uridyltransferase in Escherichia coll. Bacterial (1993) 175:6150–6157.
  • LOWE AM, DERESIEWICZ RL: Cloning and sequencing of Staphylococcus aureus murC, a gene essential for cell wall biosynthesis. DNA Seq. (1999) 10:19–23.
  • WALSH AW, FALK PJ, THANASSI J, DISCOTTO L, PUCCI MJ, HO HT: Comparison of the D-glutamate-adding enzymes from selected gram-positive and gram-negative bacteria. I Bacterial (1999) 181:5395–5401.
  • BROWN E, VIVAS E, WALSH C, KOLTER R: MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coll. I Bacterial (1995) 177:4194–4627.
  • EL ZOEIBY A, SANS CHAGRIN LAMOUREUX J, DARVEAU A, LEVESQUE RC: Cloning, over-expression and purification of Pseudamortas aeruginosa murC encoding uridine diphosphate N-acetylmuramate: L-alanine ligase. FEMS Microbial Lett. (2000) 183:281–288.
  • BOUHSS A, MENGIN-LECREULX D, BLANOT D, VAN HEIJENOORT J, PARQUET C: Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAci-alanine ligase from Escherichia coll. Biochemistry (1997) 36:11556–11563.
  • MENGIN-LECREULX D, VAN HEIJENOORT J: Copurification of glucosamine-l-phosphate acetyltransferase and N-acetylglucosamine-l-phosphate uridyltransferase activities of Escherichia colt. characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. I Bacterial (1994) 176:5788–5795.
  • GEHRING AM, LEES WJ, MINDIOLA DJ, WALSH CT, BROWN ED: Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coil. Biochemistry (1996) 35:579–585.
  • POMPEO F, BOURNE Y, VAN HEIJENOORT J, FASSY F, MENGIN-LECREULX D: Dissection of the bifunctional Escherichia coil N-acetylglucosamine-l-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-l-phosphate acetyltransferase activity and cell growth. I Biol. Chem. (2001) 276:3833–3839.
  • OLSEN LR, RODERICK SL: Structure ofthe Escherichia coil GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry (2001) 40:1913–1921.
  • SULZENBACHER G, GAL L, PENEFF C, FASSY F, BOURNE Y: Crystal structure of Streptococcus prieumardae N-acetylglucosamine-l-phosphate uridykransferase bound to acetyl-coenzyme A reveals a novel active site architecture. _J. Biol. Chem. (2001) 276:11844–11851.
  • WALSH CT, BENSON TE, KIM DH, LEES WJ: The versatility of phosphoenolpyruvate and its vinyl ether products in biosynthesis. Chem. Biol. (1996) 3:83–91.
  • ••Great review of the enzyme mechanismsusing phosphoenolpyruvate in biosynthesis.
  • DU W, BROWN JR, SYLVESTER DR et al: Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J. Bacterial (2000) 182:4146–4627.
  • KIM DH, LEES WJ, KEMPSELL KE, LANE WS, DUNCAN K, WALSH CT: Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-G1cNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry (1996) 35:4923–4928.
  • •Good example of how structure-function studies can be used to explain mechanisms of resistance at a molecular level.
  • HORII T, KIMURA T, SATO K, SHIBAYAMA K, OHTA M: Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli 026. Antimicrob. Agents Chemother. (1999) 43:789–793.
  • ARCA P, REGUERA G, HARDISSON C:Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicentre survey. _J. Antimicrob. Chemother. (1997) 40:393–399.
  • DE SMET KA, KEMPSELL KE, GALLAGHER A, DUNCAN K, YOUNG DB: Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis Microbiology (1999) 145:3177–3184.
  • LEON J, GARCIA-LOBO JM, ORTIZ JM: Fosfomycin inactivates its target enzyme in Escherichia coli cells carrying a fosfomycin resistance plasmid. Antimicrob. Agents Chemother. (1983) 24:276–278.
  • BAUM EZ, MONTENEGRO DA, LICATA L et al: Identification and Characterization of New Inhibitors of the Escherichia coli MurA Enzyme. Antimicrob. Agents Chemother. (2001) 45:3182–3188.
  • SAMLAND AK, ETEZADY-ESFARJANI T, AMRHEIN N, MACHEROUX P: Asparagine 23 and aspartate 305 are essential residues in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae. Biochemistry (2001) 40:1550–1559.
  • SCHONBRUNN E, SACKS, ESCHENBURG S et al.: Crystal structure of UDP-N-acetylglucosamine enolpyruvykransferase, the target of the antibiotic fosfomycin. Structure (1996) 4:1065–1075.
  • SCHONBRUNN E, ESCHENBURG S, LUGER K, KABSCH W, AMRHEIN N: Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc. Natl. Acad. Sci. USA (2000) 97:6345–6349.
  • SKARZYNSKI T, KIM DH, LEES WJ, WALSH CT, DUNCAN K: Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analogue of the reaction tetrahedral intermediate bound to the active site of the C11 5A mutant of MurA. Biochemistry (1998) 37:2572–2577.
  • SKARZYNSKI T, MISTRY A, WONACOTT A, HUTCHINSON SE, KELLY VA, DUNCAN K: Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure (1996) 4:1465–1474.
  • SAMLAND AK, ETEZADY ESFARJANI T, AMRHEIN N, MACHEROUX P: Asparagine 23 and aspartate 305 are essential residues in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae. Biochemistry (2001) 40:1550–1559.
  • BENSON TE, MARQUARDT JL, MARQUARDT AC, ETZKORN FA, WALSH CT: Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry (1993) 32:2024–2030.
  • BENSON TE, WALSH CT, MASSEY V: Kinetic characterization of wild type and 5229A mutant MurB: evidence for the role of Ser 229 as a general acid. Biochemistry (1997) 36:796–805.
  • BENSON TE, FILMAN DJ, WALSH CT, HOGLE JM: An enzyme-substrate complex involved in bacterial cell wall biosynthesis. Nat. Struct. Biol. (1995) 2:644–653.
  • BENSON TE, WALSH CT, HOGLE JM: X-ray crystal structures of the 5229A mutant and wild type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine at 1.8-A resolution. Biochemistry (1997) 36:806–811.
  • ALTSCHUL SF, MADDEN TL, SCHAFFER AA et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. (1997) 25:3389–3402.
  • BENSON TE, HARRIS MS, CHOI GH et al: A structural variation for MurB: x-ray crystal structure of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry (2001) 40:2340–2350.
  • •Good example of how protein structure can be used to identify differences among target enzymes in developing antibacterial agents with broad spectrum.
  • ANDRES CJ, BRONSON JJ, D'ANDREA SV et al: 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioarg. Med. Chem. Lett. (2000) 10:715–717.
  • BERTRAND JA, FANCHON E, MARTIN L et al.:'Open' structures of MurD: domain movements and structural similarities with folylpolyglutamate synthetase. j Mal Biol. (2000) 301:1257–1266.
  • BERTRAND JA, AUGER G, FANCHON E et al.: Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. EMBO J. (1997) 16:3416–3425.
  • BERTRAND JA, AUGER G, MARTIN L et al.: Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. j. Ma Biol. (1999) 289:579–590.
  • GORDON E, FLOURET B, CHANTALAT L, VAN HEIJENOORT J, MENGIN-LECREULX D, DIDEBERG O: Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia colt. J. Biol. Chem. (2001) 276:10999–11006.
  • YAN Y, MUNSHI S, LEITING B, ANDERSON MS, CHRZAS J, CHEN Z: Crystal structure of Escherichia coli UDP-MurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution. J. Mal Biol. (2000) 304:435–445.
  • BOUHSS A, DEMENTIN S, PARQUET C et al.: Role of the ortholog and paralog amino acid invariants in the active site of the UDP-MurNAc-L-alanine:D-glutamate ligase (MurD). Biochemistry (1999) 38:12240–12247.
  • BOUHSS A, DEMENTIN S, VAN HEIJENOORT J, PARQUET C, BLANOT D: Formation of adenosine 5'-tetraphosphate from the acyl phosphate intermediate: a difference between the MurC and MurD synthetases of Escherichia call FEBS Lett. (1999) 453:15–19.
  • ANDERSON MS, EVELAND SS, ONISHI HR, POMPLIANO DL: Kinetic mechanism of the Escherichia coliUDP-MurNAc-tripeptide D-alanyl-D-alanine-adding enzyme: use of a glutathione S-transferase fusion. Biachemistry1996, 35:16264–16269.
  • DUNCAN K, VAN HEIJENOORT J, WALSH CT: Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia call Biochemistry (1990) 29:2379–2386.
  • EMANUELE JJ JR., JIN H, JACOBSON BL, CHANG CY, EINSPAHR HM, VILLAFRANCA JJ: Kinetic and crystallographic studies of Escherichia coil UDP-N-acetylmuramate:L-alanine ligase. Prot. Sci. (1996) 5:2566–2574.
  • FALK PJ, ERVIN KM, VOLK KS, HO HT: Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coil UDP-N-acetylmuramate:L-alanine ligase-catalyzed reaction. Biochemistry (1996) 35:1417–1422.
  • LIGER D, MASSON A, BLANOT D, VAN HEIJENOORT J, PARQUET C: Study of the overproduced uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coil. Microb. Ding. Resist. (1996) 2:25–27.
  • RECK E MARMOR S, FISHERS, WUONOLA MA: Inhibitors of the bacterial cell wall biosynthesis enzyme MurC. Bioarg. Med. Chem. Lett. (2001) 11:1451–1454.
  • GEGNAS LD, WADDELL ST, CHABIN RIVI, REDDY S, WONG KK: Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioarg. Med. Chem. Lett. (1998) 8:1643–1648.
  • GOBEC S, URLEB U, AUGER G, BLANOT D: Synthesis and biochemical evaluation of some novel N-acyl phosphono- and phosphinoalanine derivatives as potential inhibitors of the D-glutamic acid-adding enzyme. Pharmazie (2001) 56:295–297.
  • ZENG B, WONG KK, POMPLIANO DL, REDDY S, TANNER ME: A phosphinate inhibitor of the meso-diaminopimelic acid-adding enzyme (MurE) of peptidoglycan biosynthesis. j. Org. Chem. (1998) 63:10081–10086.
  • WONG la, KUO DW, CHABIN RM et al.: Engineering a cell-free murein biosynthetic pathway: combinatorial enzymology in drug discovery. I Am. Chem. Soc. (1998) 120:13527–13528.
  • MENGIN-LECREULX D, BLANOT D, VAN HEIJENOORT J: Replacement of diaminopimelic acid by cystathionine or lanthionine in the peptidoglycan of Escherichia coli. j. Bacterial (1994) 176:4321–4327.
  • MENGIN-LECREULX D, FALLA T, BLANOT D, VAN HEIJENOORT J, ADAMS DJ, CHOPRA I: Expression of the Staphylococcus aureus UDP-N-acetylmuramoyl- L-alanyl-D-glutamate:L-lysine ligase in Escherichia coil and effects on peptidoglycan biosynthesis and cell growth. J. Bacterial (1999) 181:5909–5914.
  • DINI C, COLLETTE P, DROCHON N et al.: Synthesis of the nucleoside moiety of liposidomycins: elucidation of the pharmacophore of this family of MraY inhibitors. Bioarg. Med. Chem. Lett. (2000) 10:1839–1843.
  • DINI C, DROCHON N, FETEANU S, GUILLOT JC, PEIXOTO C, ASZODI J: Synthesis of analogues of the O-beta-D-ribofuranosyl nucleoside moiety of liposidomycins. Part 1: contribution of the amino group and the uracil moiety upon the inhibition of MraY. Bioarg. Med. Chem. Lett. (2001) 11:529–531.
  • DINI C, DROCHON N, GUILLOT JC, MAUVAIS P, WALTER P, ASZODI J: Synthesis of analogues of the O-beta-D-ribofuranosyl nucleoside moiety of liposidomycins. Part 2: role of the hydroxyl groups upon the inhibition of MraY. Bioarg. Med. Chem. Lett. (2001) 11:533–536.
  • BOUHSS A, MENGIN-LECREULX D, LE BELLER D, VAN HEIJENOORT J: Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol. Microbial. (1999) 34:576–585.
  • BRANSTROM AA, MIDHA S, LONGLEY CB, HAN K, BAIZMAN ER, AXELROD HR: Assay for identification of inhibitors for bacterial MraY translocase or MurG transferase. Anal. Biochem. (2000) 280:315–319.
  • CHANDRAKALA B, ELIAS BC, MEHRA U et al.: Novel scintillation proximity assay for measuring membrane-associated steps of peptidoglycan biosynthesis in Escherichia call Antimicrob. Agents Chemother. (2001) 45:768–775.
  • ANDERSON JS, MATSUHASHI M, HASKIN MA, STROMINGER JL: Biosythesis of the peptidoglycan of bacterial cell walls. II. Phospholipid carriers in the reaction sequence. I Biol. Chem. (1967) 242:3180–3190.
  • LO M-C, MEN H, BRANSTROM A, et al.: A new mechanism of action proposed for ramoplanin. j Am. Chem. Soc. (2000) 122:3540–3541.
  • HAS, CHANG E, LO M-C et al.: The kinetic characterization of Escherichia coil MurG using synthetic substrate analogues. J. Am. Chem. Soc. (1999) 122:8415–8426.
  • ••Good description of using innovativeapproaches to overcome technical obstacles associated with working with enzymes in peptidoglycan biosynthesis.
  • MEN H, PARK P, GEM, WALKERS: Substrate synthesis and activity assay for MurG. j Am. Chem. Soc. (1998) 120:2484–2485.
  • HAS, WALKER D, SHI Y, WALKERS: The 1.9 A crystal structure of Escherichia colt MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. (2000) 9:1045–1052.
  • COX RJ, SUTHERLAND A, VEDERAS JC: Bacterial diaminopimelate metabolism as a target for antibiotic design. Bioorg. Med. Chem. Lett. (2000) 8:843–871.
  • HEGDE SS, SHRADER TE: FemABX family members are novel nonribosomal peptidyltransferases and important pathogen-specific drug targets. _J. Biol. Chem. (2001) 276:6998–7003.
  • ELLSWORTH BA, TOM NJ, BARTLETT PA: Synthesis and evaluation of inhibitors of bacterial D-alanine:D-alanine ligases. Chem Biel (1996) 3:37–44.
  • PARSONS WH, PATCHETT AA, BULL HG et al: Phosphinic acid inhibitors of D-alanyl-D-alanine ligase. j. Med. Chem. (1988) 31:1772–1778.
  • APFEL CM, TAKACS B, FOUNTOULAKIS M, STIEGER M, KECK W: Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. Bacteria (1999) 181:483–492.
  • KATO J, FUJISAKI S, NAKAJIMA K, NISHIMURA Y, SATO M, NAKANO A: The Escherichia coil homologue of yeast RER2, a key enzyme of dolichol synthesis, is essential for carrier lipid formation in bacterial cell wall synthesis. _J. Bacteria. (1999) 181:2733–2738.
  • FUJIHASHI M, ZHANG Y-W, HIGUCHI Y, LI X-Y, KOYAMA T, MIKI K: Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Nati Acad. Sri. USA (2001) 98:4337–4342.
  • TAO J, WENDLER P, CONNELLY G et al: Drug target validation: Lethal infection blocked by inducible peptide. PNAS (2000) 97:783–786.

Websites

  • http://www.bact.wisc.edu/Bact303/ Structure Online textbook of bacteriology: structure and function of prokaryotic cells.
  • http://www.ncbi.nlm.nih.gov/entrezi query.fcgi?db=Protein Entrez protein data base.
  • http://www.rcsb.orglpdb/index.html Protein data base.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.