260
Views
32
CrossRef citations to date
0
Altmetric
Miscellaneous

Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins

Pages 387-399 | Published online: 25 Feb 2005

Bibliography

  • NELIS E, HAITES N, VAN BROECKHOVEN C: Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum. Mutat. (1999) 13:11–28.
  • STOILOV I, AKARSU AN, SARFARAZI M: Identification of three different truncating mutations in cytochrome P4501B1 (CYPIBI) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mot. Genet. (1997) 6:641–647.
  • BEJJANI BA, LEWIS RA, TOMEY KF et al.: Mutations in CYPIBI, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am. J. Hum. Genet. (1998) 62:325–333.
  • ELLEDGE SJ: Cell cycle checkpoints: preventing an identity crisis. Science (1996) 274:1664–1672.
  • SULSTON JE: Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quoin-. Biol. (1983) 48:443–452.
  • SCHIERENBERG E, COLE T, CARLSON C, SIDIO W: Computer-aided three-dimensional reconstruction of nematode embryos from EM serial sections. Exp. Cell Res. (1986) 166:247–252.
  • EPSTEIN HF, LU GY, DEITIKER PR, ORITZ I, SCHMID MF: Preliminary three-dimensional model for nematode thick filament core. J. Struct. Biol. (1995) 115:163–174.
  • HALL DH, RUSSELL RL: The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J. Neurosci. (1991) 11:1–22.
  • JUSTICE MJ, NOVEROSKE JK, WEBER JS, ZHENG B, BRADLEY A: Mouse ENU mutagenesis. Hum. Mol. Genet. (1999) 8:1955–1963.
  • HERRON BJ, LU W, RAO C et al.: Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat. Genet. (2002) 30:185–189.
  • SULLIVAN W, ASHBURNER M, HAWLEY RS: Drosophila protocols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA (2000).
  • ••Excellent resource for techniques inDrosophila genetics. The place to start for any small fly lab, be it academic or commercial.
  • ADAMS MD, CELNIKER SE, HOLT RA et al.: The genome sequence of Drosophila melanogaster Science (2000) 287:2185–2195.
  • GRAVELEY BR: Alternative splicing: increasing diversity in the proteomic world. Trends Genet. (2001) 17:100–107.
  • REITER LT, POTOCKI L, CHIEN S, GRIBSKOV M, BIER E: A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. (2001) 11:1114–1125.
  • ••Describes the Homophila database availableat [MU The database is periodically updated and is an essential resource for investigators in human and Drosophila genetics exploring disease aetiology.
  • ALTSCHUL SE MADDEN TL, SCHAFFER AA et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. (1997) 25:3389–3402.
  • BRAND AH, PERRIMON N: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (1993) 118:401–415.
  • •First description of the GAL4/UAS misexpression system, which has become the standard method of transgene expression in Drosophila.
  • KAZEMI-ESFARJANI P, BENZER S: Genetic suppression of polyglutamine toxicity in Drosophila. Science (2000) 287:1837–1840.
  • RUBIN GM, SPRADLING AC: Genetic transformation of Drosophila with transposable element vectors. Science (1982) 218:348–353.
  • ROSEMAN RR, JOHNSON EA, RODESCH CK et al.: A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics (1995) 141:1061–1074.
  • LUKACSOVICH T, ASZTALOS Z, AWANO W et al.: Dual-tagging gene trap of novel genes in Drosophila melanogaster Genetics (2001) 157:727–742.
  • BERGER J, SUZUKI T, SENTI KA et al.: Genetic mapping with SNP markers in Drosophila. Nat. Genet. (2001) 29:475–481.
  • HOSKINS RA, PHAN AC, NAEEMUDDIN M et al.: Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res. (2001) 11:1100–1113.
  • ELBASHIR SM, MARTINEZ J, PATKANIOWSKA A, LENDECKEL W, TUSCHL T: Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. (2001) 20:6877–6888.
  • HUNTER CP: Genetics: a touch of elegancewith RNAi. Curr. Biol. (1999) 9:R440–R442.
  • THEODOSIOU NA, XU T: Use of FLP/FRT system to study Drosophila development. Methods (1998) 14:355–365.
  • JACKSON GR, SALECKER I, DONG X et al.: Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron (1998) 21:633–642.
  • WARRICK JM, PAULSON HL, GREY-BOARD GL et al.: Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell (1998) 93:939–949.
  • WARRICK JM, CHAN HY, GREY-BOARD GL et al.: Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. (1999) 23:425–428.
  • FERNANDEZ-FUNEZ P, NINO-ROSALES ML, DE GOUYON B et al.: Identification of genes that modify ataxin- 1-induced neurodegeneration. Nature (2000) 408:101–106.
  • KAZANTSEV A, WALKER HA, SLEPKO N et al.: A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. (2002) 25:25.
  • CHAN HY, WARRICK JM, GREY-BOARD GL, PAULSON HL, BONINI NM: Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. (2000) 9:2811–2820.
  • ANDERTON BH: Alzheimer&s disease: clues from flies and worms. CWT. Biol. (1999) 9:R106–R109.
  • FERBER D: Neurodegenerative disease. Using the fruit fly to model tau malfunction. Science (2001) 292:1983–1984.
  • FEANY MB, BENDER WW: A Drosophila model of Parkinson's disease. Nature (2000) 404:394–398.
  • •Challenges the conventional thinking on using Drosophila as a model for disease as there is no fly counterpart to the human a-synuclein protein which is misexpressed in this study.
  • FOSSGREEN A, BRUCKNER B, CZECH C et al.: Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. Proc. Natl. Acad. Sci. USA (1998) 95:13703–13708.
  • WITTMANN CW, WSZOLEK ME SHULMAN JM et al.: Tauopathy in Drosophila: neurodegeneration without neuroflbrillary tangles. Science (2001) 293:711–714.
  • YAGI Y, TOMITA S, NAKAMURA M, SUZUKI T: Overexpression of human amyloid precursor protein in Drosophila. Mol. Cell. Biol. Res. Comm (2000) 4:43–49.
  • HAASS C, KAHLE PJ: Parkinson's pathology in a fly. Nature (2000) 404:341–343.
  • AULUCK P, CHAN HY, TROJANOWSKI J, LEE V, BONINI NM: Chaperone suppression of a-synuclein toxicity in a Drosophila model for Parkinson's disease. Science (2001) 295:865–868.
  • WALKER RG, WILLINGHAM AT, ZUKER CS: A Drosophila mechanosensory transduction channel. Science (2000) 287:2229–2234.
  • WU MN, BELLEN HJ: Genetic dissection of synaptic transmission in Drosophila. Cun: Opin. Neurobiol. (1997) 7:624–630.
  • BEJJANI BA, STOCKTON DW, LEWIS RA et al.: Multiple CYPIBI mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum. Mol. Genet. (2000) 9:367–374.
  • REITER L, MCELROY M, BEJJANI BB, BIER E: Mutations in the Drosophila homolog of the gene for primary congenital glaucoma cause fluid flow and neurological defects. Am. Soc. Hum. Genet. San Diego, CA, USA (2001).
  • WILKIE AO, SLANEY OLDRIDGE M et al.: Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat. Genet. (1995) 9:165–172.
  • LOMRI A, LEMONNIER J, HOTT M et al.: Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome. j. Invest. (1998) 101:1310–1317.
  • APERT ME: De f acrocephalosyndactylie. Bull. Mem. Soc. Med. Hop. Pans (1906) 23:1310–1330.
  • ANDERSON J, BURNS HD, ENRIQUEZ-HARRIS P, WILKIE AO, HEATH JK: Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum. Mol. Genet. (1998) 7:1475–1483.
  • OLIVIER JP, RAABE T, HENKEMEYER M et al.: A Drosophila 5H2-5H3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell (1993) 73:179–191.
  • SIMON MA, BOWTELL DD, DODSON GS, LAVERTY TR, RUBIN GM: Rasl and a putative guanine nucleotide exchange factor perform crucial steps in signalling by the sevenless protein tyrosine kinase. Cell (1991) 67:701–716.
  • RUBIN GM, CHANG HC, KARIM F et al.: Signal transduction downstream from Ras in Drosophila. Cold Spring Harb. Symp. Quark. Biol. (1997) 62:347–352.
  • BIER E: Localized activation of RTK/MAPK pathways during Drosophiladevelopment. Bioessays (1998) 20:189–194.

Websites

  • http://homophila.sdsc.edu
  • www.ncbi.nlm.nih.goviomimi Online Mendelian Inheritance in Man, OMIM. (2000).
  • ••This is the definitive source for humangenetic disease phenotypes, genotypes and even molecular information on the disorders.
  • http://flybase.bio.indiana.edu/ The FlyBase database of the Drosophila Genome projects and community literature. The FlyBase Consortium (1999).
  • ••A good resource for fly stocks, mutations,phenotype and contact information on researchers who use Drosophila.
  • http://flypush.imgen.bcm.tmc.edu/pscreen/ P-screen database (2002) .
  • •An expanding collection of P-element insertions. The goal of this project is to saturate the Drosophila genome with insertions to speed up the process of generating mutant alleles.
  • www.fly-trap.org/ Flytrap (2000).
  • ••A very good collection of brain expressingGAL4 drivers is available here. The site contains many images of the various expression patterns.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.