129
Views
21
CrossRef citations to date
0
Altmetric
Miscellaneous

Promising therapeutic targets for antileishmanial drugs

Pages 407-422 | Published online: 25 Feb 2005

Bibliography

  • HIRST S, STAPLEY L: Parasitology: the dawn of a new millennium. Parasitol Today (2000) 16:1–3.
  • BERMAN JD: Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin. Infect. Dis. (1997) 24:684–703.
  • MURRAY H: Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob. Agents Chemother: (2001) 45:2185–2197.
  • •Review of current antileishmanial treatments, antileishmanial clinical candidates, and a detailed overview of the immunology of Leishmania infection.
  • SEAMAN J, MERCER A, SONDORP E: The epidemic of visceral leishmaniasis in western Upper Nile, southern Sudan: course and impact from 1984 to 1994. Int. Epidemiol (1996) 25:862–871.
  • BORA D: Epidemiology of visceral leishmaniasis in India. Nati Med. I India (1999) 12:62–68.
  • ROWLAND M, MUNIR A, DURRANI N, NOYES H, REYBURN H:An outbreak of cutaneous leishmaniasis inan Afghan refugee settlement in north-west Pakistan. Trans. R. Soc. Trop. Med. Hyg. (1999) 93:133–136.
  • ROBERTS W, MCMURRAY W, RAINEY P: Characterization of the antimonial antileishmanial agent meglumine antimonate (glucantime). Antimicrob. Agents Chemother. (1998) 42:1076–1082.
  • LIRA R, SUNDAR S, MAKHARIA A et al.: Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani Infect. Dis. (1999) 180:564–567.
  • YARDLEY V, CROFT S: Activity of liposomal amphotericin B against experimental cutaneous leishmaniasis. Antimicrob. Agents Chemother. (1997) 41:752–756.
  • AMATO V, NICODEMO A, AMATO J, BOULOS M, AMATO NETO V: Mucocutaneous leishmaniasis associated with HIV infection treated successfully with liposomal amphotericin B (AmBisome). Antimicrob. Chemother. (2000) 46:341–342.
  • SAMPAIO R, MARSDEN P: Mucosal leishmaniasis unresponsive to glucantime therapy successfully treated with AmBisome. Trans. R. Soc. Trop. Med. Hyg. (1997) 91:77.
  • HELLIER I, DEREURE 0,TOURNILLAC I et al.: Treatment of old world cutaneous leishmaniasis by pentamidine isethionate. An open study of 11 patients. Dermatology (2000) 200:120–123.
  • SOTO J, BUFFET P, GROGL M, BERMAN J: Successful treatment of Columbian cutaneous leishmaniasis with four injections of pentamidine. Am. I Trop. Med. Hyg. (1994) 50:107–111.
  • GOA K, CAMPOLI-RICHARDS D: Pentamidine isethionate. A review of its antiprotozoal activity, pharmacokinetic properties and therapeutic use in Pneumocystis cariniipneumonia. Drugs (1987) 33:242–258.
  • ARANA B, MENDOZA C, RIZZO N, KROEGER A: Randomized, controlled, double-blind trial of topical treatment of cutaneous leishmaniasis with paromycin plus methybenzethonium chloride ointment in Guatemala. Am. I Trop. Med. Hyg. (2001) 65:466–470.
  • JHA T, OLLIARO P, THAKUR C et al.: Randomised controlled trial of aminosidine (paromomycin) vsodium stibogluconate for treating visceral leishmaniasis in North Bihar, India. Br. Med. .1 (1998) 316:1200-1205.
  • SUNDAR S, MAKHARIA A, MORE D et al.: Short-course of oral miltefosine for treatment of visceral
  • ••leishmaniasis. Clin. Infect. Dis. (2000) 31:1110–1113.
  • SOTO J, TOLEDO J,GUTTIERREZ P et al: Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Gin. Infect. Dis. (2001) 33:e57–61.
  • SHERWOOD J, GACHIHI G,MUIAGI R et al.: Phase II efficacy trial of an oral 8-aminoquinoline (WR6026) for treatment of visceral leishmaniasis. Clin. Infect. Dis. (1994) 19:1034–1039.
  • DIETZ R, CARVALHO S, VALLI L et al: Phase II trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am. I Bop. Med. Hyg. (2001) 65:685–689.
  • VELEZ I, AGUDELO S,HENDRICKX E et al.: Inefficacy of allopurinol as a monotherapy for Colombian cutaneous leishmaniasis. A randomized, controlled trial. Ann. Intern. Med. (1997) 126:232–236.
  • KOUTINAS A,SARIDOMICHELAKIS M, MYLONAKIS M et al.: A randomised, blinded, placebo-controlled clinical trial with allopurinol in canine leishmaniasis. Vet. Parasitol (2001) 98:247–261.
  • CROFT S, YARDLEY V: Chemotherapy of leishmaniasis. Curr: Pharm. Des. (2002) 8:319–342.
  • ••Comprehensive review of the current stateof antileishmanial chemotherapy, including a complete assessment of clinical antileishmanial agents, possible drug candidates, and an overview of Leishmania biology.
  • VANDEN BOSSCHE H,WILLEMSENS G, MARICHAL P: Anti-Candida drugs - the biochemical basis for their activity. Crit. Rev Microbiol (1987) 15:57–72.
  • DOGRA J, SAXENA V: Itraconazole and leishmaniasis: a randomised double-blind trial in cutaneous disease. Int. J. Parasitol (1996) 26:1413–1415.
  • MOMENT A, JALAYER T,EMAMJOMEH M et al.: Treatment of cutaneous leishmaniasis with itraconazole. Randomized double-blind study. Arch. Dermatol (1996) 132:784–786.
  • GANGNEUX J, DULLIN M,SULAHIAN A, GARIN Y, DEROUIN F: Experimental evaluation of second-line oral treatments of visceral leishmaniasis causedby Leishmania infantum. Antimicrob. Agents Chemother. (1999) 43:172–174.
  • RASHID J, WASUNNA K,GACHIHI G et al.: The efficacy and safety of ketoconazole in visceral leishmaniasis. East Afr. Med. 1(1994) 71:392-395.
  • URBINA J, PAYARES G,MOLINA Jet al.: Cure of short- and long-term experimental Chagas' disease using D0870. Science (1996) 273:969–971.
  • MOLINA J, MARTINS-FILHO 0, BRENER Z et al.: Activities of the triazole derivative SCH 56592 (Posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob. Agents Chemother. (2000) 44:150–155.
  • AL-ABDELY H, GRAYBILL J,LOEBENBERG D, MELBY P: Efficacy of the triazole SCH 56592 against Leishmania amazonensis and Leishmania donovani in experimental murine cutaneous and visceral leishmaniases. Antimicrob. Agents Chemother. (1999) 43:2910–2914.
  • •Demonstration of the in vivo efficacy of SCH 56592 (posaconazole) against murine cutaneous leishmaniasis.
  • RANGEL H, DAGER F,HERNANDEZ A, LIENDO A, URBINA J: Naturally azole-resistant Leishmania braziliensis promastigotes are rendered susceptible in the presence of terbinafine. A comparative study with azole-susceptible Leishmania mexicana. Antimicrob. Agents Chemother: (1996) 40:2785–2791.
  • URBINA J: Lipid biosynthesis pathways aschemotherapeutic targets in kinetoplastid parasites. Parasitology (1997) 114:S91–S99.
  • ZHANG F, CASEY P: Protein prenylation: molecular mechanisms and functional consequences. Ann. Rev Biochem. (1996) 65:241–269.
  • FIELD H, BLENCH I, CROFT S, FIELD M: Characterization of protein isoprenylation in procyclic form Trypanosoma brucei J. Biol. Chem. (1996) 82:67–80.
  • YOKOYAMA K, TROBRIDGE P, BUCKNER F et al.: The effects of protein farnesyltransferase inhibitors on trypanosomatids: inhibition of protein farnesylation and cell growth. Ma Biochem. Parasitol (1998) 94:87–97.
  • ALT B, PAL A, CROFT S, TAYLOR R, FIELD M: The farnesyltransferase inhibitor manumycin A is a novel trypanocide with a complex mode of action including effects on mitochondria. Ma Biochem. Parasitol (1999) 104:67–80.
  • VAN BEEK E, PIETERMAN E,COHEN L, LOWIK C, PAPAPOULOS S: Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem. Biophys. Res. Commun. (1999) 264:108–111.
  • BERGSTROM J, BOSTEDOR R, MASARACHIA P, RESZKA A,RODAN G: Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch. Biochem. Biophys. (2000) 373:231–241.
  • MARTIN M, ARNOLD W, HEATH H, URBINA J, OLDFIELD E: Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis. Biochem. Biophys. Res. Commun. (1999) 263:754–758.
  • MARTIN M, GRIMLEY J, LEWIS J et al: Bisphosphonates inhibit the growth of Trypanosoma brucei, Leishmania donovani, Toxoplasma gondii, and Plasmodium falcipamm: a potential route to chemotherapy. Med. Chem. (2001) 44:909–916.
  • •Reports the in vitro efficacy of bisphosphonates against kinetoplastid parasites.
  • YARDLEY V, KHAN A,MARTIN M et al.: hi vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii Antimicrob. Agents Chemother: (2002) 46:929–931.
  • •Reports the in vivo efficacy of the bisphosphonate risedronate against murine visceral leishmaniasis.
  • MONTALVETTI A, BAILEY B, MARTIN M et al.: Bisphosphonates are potent inhibitors of Trypanosoma cmzi farnesyl pyrophosphate synthase. Biol. Chem. (2001) 276:33930–33937.
  • D'SILVA C, DAUNES S: The therapeutic potential of inhibitors of the trypanothione cycle. Expert Opin. Investig. Drugs (2002) 11:217–231.
  • •A current review of antioxidant metabolism in kinetoplastid parasites and potential drug targets within this pathway.
  • AUGUSTYNS K, AMSSOMS K, YAMANI A, RAJAN P, HAEMERS A: Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents. Curl: Pharm. Des. (2001) 7:1117–1141.
  • WERBOVETZ K: Target-based drug discovery for malaria, leishmaniasis, and trypanosomiasis. Curl: Med. Chem. (2000) 7:835–860.
  • KRAUTH-SIEGEL R, COOMBS G: Enzymes of parasite thiol metabolism as drug targets. Parasitol Today (1999) 15:404–409.
  • KHAN M, AUSTIN S, CHAN C et al: Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. I Med. Chem. (2000) 43:3148–3156.
  • CHIBALE K, VISSER M, YARDLEY V, CROFT S, FAIRLAMB A: Synthesis and evaluation of 9,9-dimethylxanthene tricyclics against trypanothione reductase, Trypanosome brucel Trypanosome cruzi and Leishmania donovani Bioorg. Med. Chem. Lett. (2000) 10:1147–1150.
  • SALMON-CHEMIN L, BUISINE E, YARDLEY V et al.: 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosome cruzi. synthesis and correlation between redox cycling activities and M vitro cytotoxicity. Med. Chem. (2001) 44:548–565.
  • •Synthesis and evaluation of a large series of subversive substrates for trypanothione reductase.
  • BHATTACHARJEE A, SKANCHY D, JENNINGS B et al.: A QSAR Study of antileishmanial activity on several synthetic indolo [2, 1-13] quinazoline-6,12-dione derivatives using quantum chemical, cyclic voltammetry and 3D-QSAR CATALYST methods. Bioorg. Med. Chem. (2002) 10:1979–1989.
  • KAYSER 0, KIDERLEN A, LAATSCH H, CROFT S: In vitro leishmaniacidal activity of monomeric and dimeric naphthoquinones. Acta Tropica (2000) 77:307–314.
  • DAUNES S, D'SILVA C, KENDRICK H, YARDLEY V, CROFT S: QSAR study on the contribution of log Pand Es to the in vitro antiprotozoal activity of glutathione derivatives. Med. Chem. (2001) 44:2976–2983.
  • HANSON S, ADELMAN J, ULLMAN B: Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani. .1. Biol. Chem. (1992) 267:2350–2359.
  • JIANG Y, ROBERTS S, JARDIM A et al: Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J. Biol. Chem. (1999) 274:3781–3788.
  • ROBERTS S, SCOTT J,GASTEIER J et al.: S-Adenosylmethionine decarboxylase from Leishmania donovani. .1 Biol. Chem. (2002) 277:5902–5909.
  • ROBERTS S, JIANG Y, JARDIM A et al: Genetic analysis of spermidine synthase from Leishmania donovani Mol. Biochem. Parasitol (2001) 115:217–226.
  • REGUERA R, BALANA-FOUCE R, PEREZ-PERTEJO Y et al.: Cloning expression and characterization of methionine adenosyltransferase in Leishmania infantum promastigotes. Biol. Chem. (2002) 277:3158–3167.
  • INIESTA V, GOMEZ-NIETO L, CORRALIZA I: The inhibition of arginase by N-omega-hydroxy-L-arginine controls the growth of Leishmania inside macrophages. Exp. Med. (2001) 193:777–783.
  • •Intriguing in vitro study that points to arginase as a potential antileishmanial drug target.
  • STUEHR D, KWON N,NATHAN C et al: N-omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J. Biol. Chem. (1991) 266:6259–6263.
  • MODOLELL M, CORRALIZA I, SOLER G, EICHMANN K: Reciprocal regulation of the nitric oxide synthase/ arginase balance in mouse bone marrow-derived macrophages by Thl and Th2 cytokines. Eric Immunol (1995) 25:1101–1104.
  • BASSELIN M, COOMBS G,BARRETT M: Putrescine and spermidine transport in Leishmania. Mol. Biochem. Parasitol (2000) 109:37–46.
  • SIRAWARAPORN W,SERTSRIVANICH R, BOOTH R et al: Selective inhibition of Leishmania dihydrofolate reductase and Le/simian/a growth by 5-benzy1-2,4-diaminopyrimidines. MM. Biochem. Parasitol (1988) 31:79–86.
  • KNIGHTON D, KAN C,HOWLAND E et al.: Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylatesynthase. Nat. Struct. Biol. (1994) 1:186–194.
  • CHOWDHURY S, VILLAMOR V, GUERRERO R et al.: Design, synthesis, and evaluation of inhibitors of trypanosomal and leishmanial dihydrofolate reductase. Med. Chem. (1999) 42:4300–4312.
  • CHOWDHURY S, DI LUCREZIA R, GUERRERO R et al.: Novel inhibitors of leishmanial dihydrofolate reductase. Bioorg. Med. Chem. Lett. (2001) 11:977–980.
  • NARE B, HARDY L, BEVERLEY S: The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major.' Biol. Chem. (1997) 272:13883–13891.
  • NARE B, LUBA J, HARDY L, BEVERLEY S: New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology (1997) 114:S101–S110.
  • HARDY L, MATTHEWS W, NARE B, BEVERLEY S: Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways. Exp. Parasitol (1997) 87:157–169.
  • CUNNINGHAM M, BEVERLEY S: Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Ma Biochem. Parasitol (2001) 113:199–213.
  • GOURLEY D, SCHUTTELKOPF A, LEONARD G et al.: Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nat. Struct. Biol. (2001) 8:521–525.
  • SAJID M, MCKERROW J: Cysteine proteases of parasitic organisms. Ma Biochem. Parasitol (2002) 120:1–21.
  • COOMBS G, MOTTRAM J: Parasite proteinases and amino acid metabolism: possibilities for chemotherapeutic exploitation. Parasitology (1997) 114:S61–S80.
  • MOTTRAM J, SOUZA A, HUTCHISON J et al.: Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc. Natl Acad. ScL USA (1996) 93:6008–6013.
  • SELZER P, CHEN X, CHAN V et al.: Leishmania major: Molecular modeling of cysteine proteases and prediction of newnonpeptide inhibitors. Exp. Parasitol(1997) 87:212–221.
  • SELZER P, PIN GEL D, HSIEH I et al.:Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc. Nati Acad. Sci. USA (1999) 96:11015–11022.
  • •Demonstration of the in vitro and in vivo potential of cysteine protease inhibitors against Leishmania.
  • ALVES L, ST. HILAIRE P,MELDAL M et al: Identification of peptides inhibitory to recombinant cysteine proteinase, CPB, of Leishmania mexicana. MM. Biochem. Parasitol (2001) 114:81–88.
  • GRAVEN A, ST HILAIRE P, SANDERSON S et al.: Combinatorial library of peptide isosters based on Diels-Alder reactions: identification of novel inhibitors against a recombinant cysteine protease from Leishmania mexicana. Comb. Chem. (2001) 3:441–452.
  • DAS L, DATTA N,BANDYOPADHYAY S, DAS P: Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response. Immunol (2001) 166:4020–4028.
  • MCGUIRE B, CHANG K: Genetic rescueof surface metalloproteinase (GP63)-deficiency in Leishmania amazonensis variants increases their infection of macrophages in the early phase. MM. Biochem. Parasitol (1994) 66:345–347.
  • MEDINA-ACOSTA E, KARESS R, SCHWARZ H, RUSSELL D: The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. MM. Biochem. Parasitol (1989) 37:263–273.
  • BANGS J, RANSOM D, NIMICK M, CHRISTIE G, HOOPER N: In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetic metalloprotease inhibitors. MM. Biochem. Parasitol (2001) 114:111–117.
  • DICKSON D: Anti-AIDS drugs available 'at cost'. Nature (2001) 410:289.
  • JORDAN A, HADFIELD J,LAWRENCE N, MCGOWN A: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med. Res. Rev (1998) 18:259–296.
  • LACEY E: Mode of action of benzimidazoles. Parasitol Today (1990) 6:112–115.
  • DOWNING K: Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Ann. Rev Cell Dev. Biol. (2000) 16:89–111.
  • WERBOVETZ K, BRENDLE J, SACKETT D: Purification, characterization, and drug susceptibility of tubulin from Leishmania. Mol. Biochem. Parasitol (1999) 98:53–65.
  • •Initial characterisation of the drug susceptibility of tubulin from Leishmania.
  • HAVENS C, BRYANT N, ASHER L et al: Cellular effects of leishmanial tubulin inhibitors on L. donovani. Mol. Biochem. Parasitol (2000) 110:223–236.
  • MOREJOHN L, FOSKET D: The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmac. Ther. (1991) 51:217–230.
  • CHAN M, FONG D: Inhibition of Leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science (1990) 249:924–926.
  • CHAN M, GROGL M, CHEN C-C, BIENEN EJ, FONG D: Herbicides to curb human infections: in vitro and in vivo effects of trifluralin on the trypanosomatid protozoans. Proc. Nati Acad. Sci. USA (1993) 90:5657–5661.
  • CALLAHAN HL, KELLEY C,PEREIRA T, GROGL M: Microtubule inhibitors: Structure-activity analyses suggest rational models to identify potentially active compounds. Antimicrob. Agents Chemother. (1996) 40:947–952.
  • DENISE H, BARRETT M: Uptake and mode of action of drugs used against sleeping sickness. Biochem. Pharmacol (2001) 61:1–5.
  • CASTRO M: Treatment and prophylaxis of Pneumocystis carinlipneumonia. Semin. Respir: Infect. (1998) 13:296–303.
  • CARTER N, BERGER B, FAIRLAMB A: Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma &pad brace' J. Biol. Chem. (1995) 270:28153–28157.
  • BASSELIN M, LAWRENCE F, ROBERT-GERO M: Pentamidine uptake in Leishmania donovani and Leishmania amazonensispromastigotes and axenic amastigotes. Biochem. (1996) 315:631–634.
  • REGUERA R, BALANA EDUCE R, CUBRIA J, ALVAREZ BUJIDOS M, ORDONEZ D: Putrescine uptake inhibition by aromatic diamidines in Leishmania infantum promastigotes. Biochem. Pharmacol (1994) 47:1859–1866.
  • EDWARDS K, JENKINS T, NEIDLE S:Crystal structure of a pentamidine-oligonucleotide complex: implications for DNA-binding properties. Biochemistry (1992) 31:7104–7109.
  • SHAPIRO T, ENGLUND P: Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs. Proc. Nati Acad. Sci. USA (1990) 87:950–954.
  • CALONGE M, JOHNSON R, BALANA-FOUCE R, ORDONEZ D: Effects of cationic diamidines on polyamine content and uptake on Leishmania infantum in in vitro cultures. Biochem. Pharmacol (1996) 52:835–841.
  • VERCESI A, DOCAMPO R: Ca2+ transport by digitonin-permeabilized Leishmania donovani: Effects of Ca2+, pentamidine, and WR-6026 on mitochondrial membrane potential in situ. Biochem. J. (1992) 284:463–467.
  • HALL J, KERRIGAN J,RAMACHANDRAN K et al.: Anti-Pneumocystis activity of aromatic diamidoxime prodrugs. Antimicrob. Agents Chemother: (1998) 42:666–674.
  • CLEMENT B, RAETHER W: Amidoximes of pentamidine: synthesis, trypanocidal and leishmanicidal activity. Arzneimittelforschun (1985) 35:1009–1014.
  • PATRICK D, BOYKIN D,WILSON W et al: Anti-Pneumocystis cariniipneumonia activity of dicationic carbazoles. Eur: 1 Med. Chem. (1997) 32:781–793.
  • DEL POETA M, SCHELL W, DYKSTRA C et al.: Structure in vitro activity relationships of pentamidine analogs and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob. Agents Chemother. (1998) 42:2495–2502.
  • BLAGBURN B, DRAIN K,LAND T et al.: Comparitive efficacy evaluation of dicationic carbazole compounds, nitazoxanide and paromomycin against Cryptosporidium par vum infections in a neonatal mouse model. Antimicrob. Agents Chemother: (1998) 42:2877–2882.
  • PATRICK D, HALL J, BENDER Bet al.: Synthesis and anti-Pneumocystis carinll pneumonia activity of novel dicationic dibenzothiophenes and diamidwdme prodrugs. Eur: j Med. Chem. (1999) 34:575–583.
  • BELL C, HALL J, KYLE D et al: Structure-activity relationships of analogs of pentamidine against Plasmodium falciparum and Leishmania mexicana amazonensis. Antimicrob. Agents Chemother: (1990) 34:1381–1386.
  • BRENDLE J, OUTLAW A,KUMAR A et al.: Antileishmanial activities of several classes of aromatic dications. Antimicrob. Agents Chemother: (2002) 46:797–807.
  • CHEN M, CHRISTENSEN S, BLOM J et al.: Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob. Agents Chemother. (1993) 37:2550–2556.
  • •Initial description of the potent antileishmanial activity of a chalcone derived from Chinese licorice roots.
  • CHEN M, CHRISTENSEN S, THEANDER T, KHARAZMI A: Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani Antimicrob. Agents Chemother. (1994) 38:1339–1344.
  • NIELSEN S, CHRISTENSEN S, CRUCIANI G, KHARAZMI A, LILJEFORS T: Antileishmanial chalcones: Statistical design, synthesis, and three-dimensional quantitative structure-activity relationship analysis.' Med. Chem. (1998) 41:4819–4832.
  • ZHIA L, CHEN M, BLOM J et al: The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J. Antimicrob. Chemother: (1999) 43:793–803.
  • KAYSER 0, KIDERLEN A: In vitro leishmanicidal activity of naturally occurring chalcones. Phytother: Res. (2001) 15:148–152.
  • ZHIA L, BLOM J, CHEN M,CHRISTENSEN S, KHARAZMI A: The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob. Agents Chemother. (1995) 39:2742–2748.
  • CHEN M, ZHIA L, CHRISTENSEN S, THEANDER T: Inhibition of fumarate reductase in Leishmania major andL. donovani by chalcones. Antimicrob. Agents Chemother: (2001) 45:2023–2029.
  • TURRENS J: The role of succinate in the respiratory chain of Trypanosome brucei procyclic trypomastigotes. Biochem. .1. (1989) 259:363–368.
  • LAWRENCE N, MCGOWN A,DUCKI S, HADFIELD J: The interaction of chalcones with tubulin. Anticancer Drug Des. (2000) 15:135–141.
  • LI R, KENYON G, COHEN F et al.: In vitro antimalarial activity of chalcones and their derivatives. Med. Chem. (1995) 38:5031–5037.
  • VERLINDE C, HANNAERT V, BLONSKI C et al.: Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist. Update (2001) 4:50–65.
  • BAKKER B, WESTERHOFF H, OPPERDOES F, MICHELS P: Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Ma Biochem. Paresitol (2000) 106:1–10.
  • HART D, COOMBS G: Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp. Paresitol (1982) 54:397–403.
  • WILLIAMS J, ZEELEN J,NEUBAUER G et al.: Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Eng. (1999) 12:243–250.
  • KIM H, FEIL I, VERLINDE C,PETRA P, HOL W: Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry (1995) 34:14975–14986.
  • RIGDEN D, PHILLIPS S, MICHEL SP, FOTHERGILL-GILMORE L: The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effectorspecificity.Biol. (1999) 291:615–635.
  • BRESSI J, VERLINDE C,ARONOV A et al.: Adenosine analogs as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design. Med. Chem. (2001) 44:2080–2093.
  • HASSAN P, FERGUSSON D, GRANT K, MOTTRAM J: The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol. Biochem. Paresitol (2001) 113:189–198.
  • RAYS, HAZRA B, MITTRA B, DAS A, MAJUMDER H: Diospyrin, a bisnapthoquinone: a novel inhibitor of Type 1 DNA topoisomerase of Leishmania donovani. Mol. Phadn. (1998) 54:994–999.
  • DAS A, DASGUPTA A, SHARMA S et al: Characterisation of the gene encodingType II DNA topoisomerase from Leishmania donovani: a key molecular target in antileishmanial therapy. Nucl. Adds Res. (2001) 29:1844–1851.
  • SAIRAFIANPOUR M,CHRISTENSEN J, STAERK D et al.: Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: new source of tanshinones. Nat. Prod. (2001) 64:1398–1403.
  • RIDLEY R: Medical need, scientific opportunity and the drive for antimalarial drugs. Nature (2002) 415:686–693.
  • www.who.int/inf-fs/en/fact116.html The Leishmaniases and Leishmania/HIV coinfections, WHO information fact sheets (2000).
  • www.accessmed-msLorecampaign/ lsh01.shtmLeishmaniasis, campaign for access to essential medicines, Médecins Sans Frontières (2002).
  • http://212.227.92.9/zentaris.com/content/ downloads/pr_mitefosine_orphan _drug_engLfinall30502.pdfZentaris is given orphan drug status by EU, Zentaris (2002).
  • www.accessmed-msLorg/campaign/ campaign.shtmWhat is the MSF campaign for access to essential medicines? Campaign for access to essential medicines, Médecins Sans Frontières (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.