63
Views
7
CrossRef citations to date
0
Altmetric
Miscellaneous

Antischizophrenic activity independent of dopamine D2 blockade

Pages 571-582 | Published online: 25 Feb 2005

  • LILLIOJA S, MOTT DM, HOWARD BV et al.: Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N. Engl. J. Med. (1988) 318:1217–1225.
  • ••Underscores the importance of insulinresistance in Type 2 diabetes.
  • DEFRONZO RA, BONADONNA RC, FERRANNINI E: Pathogenesis of NIDDM. A balanced overview. Diabetes Care (1992) 15:318–368.
  • LILLIOJA S, MOTT DM, SPRAUL M et al.: Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N. Engl. J. Med. (1993) 329:1988–1992.
  • WARRAM JH, MARTIN BC, KROLEWSKI AS, SOELDNER JS, KAHN CR: Slow glucose removal rate and hyperinsulinemia precede the development of Type II diabetes in the offspring of diabetic parents. Ann. Intern. Med. (1990) 113:909–915.
  • PESSIN JE, SALTIEL AR: Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. (2000) 106:165–169.
  • SALTIEL AR, KAHN RC: Insulin signalling and the regulation of glucose and lipid metabolism. Nature (2001) 414:799–806.
  • ••Excellent review of the cellularmechanisms mediating the action of insulin.
  • LITHERLAND GJ, HAJDUCH E, HUNDAL HS: Intracellular signalling mechanisms regulating glucose transport in insulin-sensitive tissues (review). Mel Membr. Biol. (2001) 18:195–204.
  • BRUNING JC, GAUTAM D, BURKS DJ et al.: Role of brain insulin receptor in control of body weight and reproduction. Science (2000) 289:2122–2125.
  • SALTIEL AR, PESSIN JE: Insulin signaling pathways in time and space. Trends Cell Biol. (2002) 12:65–71.
  • FERRANNINI E, BARRETT EJ, BEVILACQUA S, DEFRONZO RA: Effect of fatty acids on glucose production and utilization in man. I Clin. Invest. (1983) 72:1737–1747.
  • •An excellent demonstration of the link between fatty acids and insulin resistance.
  • MCGARRY JD: What if Minkowski had been ageusic? An alternative angle on diabetes. Science (1992) 258:766–770.
  • RANDLE PJ, GARLAND PB, HALES CN, NEWSHOLME EA: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (1963) 1:785–789.
  • ••The Randle hypothesis.
  • RODEN M, PRICE TB, PERSEGHIN G et al.: Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. (1996) 97:2859–2865.
  • ••Challenges the Randle hypothesis:documents defect in glucose transport and or oxidation.
  • DRESNER A, LAURENT D, MARCUCCI M et al: Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. (1999) 103:253–259.
  • ••Challenges the Randle hypothesis:documents defect in glucose transport.
  • PETERSEN KF, HENDLER R, PRICE T etal.: 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes (1998) 47:381–386.
  • •Idem.
  • FEINGOLD KR, SOUED M, STAPRANS I et al: Effect of tumor necrosis factor (TNF) on lipid metabolism in the diabetic rat. Evidence that inhibition of adipose tissue lipoprotein lipase activity is not required for TNF-induced hyperlipidemia. Clin. Invest. (1989) 83:1116–1121.
  • HIGUCHI Y, HERRERA P, MUNIESA P etal.: Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J. Exp. Med. (1992) 176:1719–1731.
  • RABINOVITCH A: An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab. Rev (1998) 14:129–151.
  • HOTAMISLIGIL GS: The role of TNFalpha and TNF receptors in obesity and insulin resistance. I Intern. Med. (1999) 245:621–625.
  • FLIER JS: Diabetes. The missing link with obesity? Nature (2001) 409:292–293.
  • WEISBERG SP, MCCANN D, DESAI M, ROSENBAUM M, LEIBEL RL, FERRANTE AW Jr: Obesity is associated with macrophage accumulation in adipose tissue../. Clin. Invest. (2003) 112: 1796-1808.
  • •Demonstrates chronic inflammation in adipose tissue of obese subjects.
  • XU H, BARNES GT, YANG Q etal.: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. (2003) 112:1821–1830.
  • •Demonstrates chronic inflammation In adipose tissue of obese subjects.
  • BODEN G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes (1997) 46:3–10.
  • AGUIRRE V, UCHIDA T, YENUSH L, DAVIS R, WHITE MF: The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). Biol. Chem. (2000) 275:9047–9054.
  • RYDEN M, DICKER A, VAN HARMELEN V et al: Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. J. Biol. Chem. (2002) 277:1085–1091.
  • HIROSUMI J, TUNCMAN G, CHANG L et al: A central role for JNK in obesity and insulin resistance. Nature (2002) 420:333–336.
  • ••Elegant demonstration of the involvementof JNK-1 in obesity-associated insulin resistance.
  • WILLIAMSON R: On the treatment of glycosuria and diabetes mellitus with sodium salicylate. BE Med. J. (1901) 1:760–762.
  • YIN MJ, YAMAMOTO Y, GAYNOR RB: The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature (1998) 396:77–80.
  • KIM JK, KIM YJ, FILLMORE JJ et al: Prevention of fat-induced insulin resistance bysalicylate.j Clin. Invest. (2001) 108:437–446.
  • HUNDAL RS, PETERSEN KF, MAYERSON AB etal.: Mechanism by which high-dose aspirin improves glucose metabolism in Type 2 diabetes.' Clin. Invest. (2002) 109:1321–1326.
  • PERSEGHIN G, SCIFO P, DE COBELLI F et al: Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of Type 2 diabetic parents. Diabetes (1999) 48: 1600-1606.
  • KRSSAK M, FALK PETERSEN K, DRESNER A et al.: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia (1999) 42:113–116.
  • PETERSEN KF, BEFROY D, DUFOUR S et al.: Mitochondrial dysfunction in the elderly: possible role in insulin-resistance. Science (2003) 300:1140–1142.
  • ••Documents that show significantmitochondrial oxidative capacity In insulin-resistant elderly subjects.
  • PETERSEN KF, DUFOUR S, BEFROY D, GARCIA R, SHULMAN GI: Impaired mitochondrial activity in the insulin-resistant offspring of patients with Type 2 diabetes. N Engl. J. Med. (2004) 350:664–671.
  • ••Documents that show significant decreaseIn mitochondrial oxidative capacity in insulin-resistant young subjects with a family history of Type 2 diabetes. May represent one of the earliest and perhaps most critical abnormalities.
  • YAO X, CHANG AY, BOULPAEP EL, SEGAL AS, DESIR GV: Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney. I Clin. Invest. (1996) 97:2525–2533.
  • CAHALAN MD, CHANDY KG, GRISSMER S: Potassium Channels in Development, Activation, and Disease in T Lymphocytes. Current Topics in Membranes (1991) 39:357–394.
  • GHANSHANI S, WULFF H, MILLER MJ et al.: Up-regulation of the IKCal Potassium Channel during T-cell Activation. Molucular Mechanisms and Functional Consequences. J. Biol. Chem. (2000) 275:37137–37149.
  • LEVITE M, CAHALON L, PERETZ A et al: Extracellular K(÷) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and betal integrins../. Exp. Med. (2000) 191:1167–1176.
  • MOURRE C, CHERNOVA MN, MARTIN-EAUCLAIRE MF et al.: Distribution in rat brain of binding sites of kaliotoxin, a blocker of Kv1.1 and Kv1.3 alpha-subunits. I. Pharmacol Exp. Ther. (1999) 291:943–952.
  • JACOB A, HURLEY IR, GOODWIN LO, COOPER GW, BENOFF S: Molecular characterization of a voltage-gated potassium channel expressed in rat testis. Mol Hum. Reprod. (2000) 6:303–313.
  • ARKETT SA, DIXON J, YANG JN, SAKAI DD, MINKIN C, SIMS SM: Mammalian osteoclasts express a transient potassium channel with properties of Kv1.3.Receptors Channels (1994) 2:281–293.
  • KOMAROVA SV, DIXON SJ, SIMS SM: Osteoclast ion channels: potential targets for antiresorptive drugs. Curr. Pharm. Des. (2001) 7:637–654.
  • WARNTGES S, FRIEDRICH B, HENKE G et al: Cerebral localization and regulation of the cell volume-sensitive serum- and glucocorticoid-dependent kinase SGKl. Pflugers Arch. (2002) 443:617–624.
  • LANG F, UHLEMANN AC, LEPPLE-WIENHUES A et al.: Cell volume regulatory mechanisms in apoptotic cell death. Herz. (1999) 24:232–235.
  • KALMAN K, PENNINGTON MW, LANIGAN MD et al: ShK-dap22, a potent Kv1.3-specific immunosuppressive polypeptide Biol Chem. (1998) 273(49):32697–32707.
  • FADOOL DA, TUCKER K, PHILLIPS JJ,SIMMEN JA: Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3.j Neurophysiol (2000) 83:2332–2348.
  • BOWLBY MR, FADOOL DA, HOLMES TC, LEVITAN IB: Modulation of the kv1.3 potassium channel by receptor tyrosine kinases. J. Gen. Physiol (1997) 110:601–610.
  • XU J, KONI PA, WANG P et al: The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum. Mol Genet. (2003) 12:551–559.
  • ••Documents the role of Kv1.3 in bodyweight regulation and overall energy balance.
  • XU J, KONI PA, WANG P et al: The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc. Natl. Acad. Sci. USA (2004) 101:3112–3117.
  • MANCHEM VP, GOLDFINE ID, KOHANSKI RA et al: A novel small molecule that directly sensitizes the insulin receptor in vitro and in vivo. Diabetes (2001) 50:824–830.
  • BROWN H, KOZLOWSKI R, PERRY H: The importance of ion channels for macrophage and microglial activation in vitro. Glia (1998) 22:94–97.
  • DECOURSEY TE, CHANDY KG, GUPTA S, CAHALAN MD: Voltage-Dependent Ion Channels in T-Lymphocytes. I Neuroimmunol (1985) 10:71–95.
  • MATTESON DR, DEUTSCH C: K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature (1984) 307:468–471.
  • KOO GC, BLAKE JT, SHAH K et al: Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Immunol (1999) 197:99–107.
  • BEETON C, WULFF H, BARBARIA J et al: Selective blockade of T lymphocyte K(÷) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc. Nat!. Acad. Li. USA (2001) 98:13942–13947.
  • ATTALI B, HONORÉ E, LESAGE F, LAZDUNSKI M, BARHANIN J: Regulation of a major cloned voltage-gated K+ channel from human T lymphocytes. FEBS Lett. (1992) 303:229–232.
  • SZABO I, BOCK J, JEKLE A et al: A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem. (2005).
  • ••Demonstrates presence of Kv1.3 in innermitochondrial membrane and effect of channel inhibition on mitochondrial membrane voltage.
  • ZISMAN A, PERONI OD, ABEL ED et al.: Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. (2000) 6:924–928.
  • WOJTASZEWSKI JF, HIGAKI Y, HIRSHMAN MF et al: Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice../. Clin. Invest. (1999) 104:1257–1264.
  • RICHTER EA, DERAVE W, WOJTASZEWSKI JF: Glucose, exerciseand insulin: emerging concepts. Physic] (2001) 535:313–322.
  • MU J, BROZINICK JT Jr, VALLADARES 0, BUCAN M, BIRNBAUM MJ: A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mel Cell. (2001) 7:1085–1094.
  • THORELL A, HIRSHMAN MF, NYGREN J et al.: Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am. .1 Physic]. (1999) 277:E733–E741.
  • HAYASHI T, HIRSHMAN ME DUFRESNE SD, GOODYEAR LJ: Skeletal muscle contractile activity in vitro stimulates mitogen-activated protein kinase signaling. Am.,/ Physic]. (1999) 277:C701–C707.
  • MACDONALD PE, HA XF, WANG J et al.: Members of the Kyl and Kv2 voltage-dependent K(+) channel families regulate insulin secretion. Mel Endocrine]. (2001) 15:1423–1435.
  • CHUTKOW WA, SAMUEL V, HANSEN PA, PU J et al: Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc. Nati Acad. Sci. USA (2001) 98:11760–11764.
  • WASADA T, YANO T, OHTA M et al: ATP-sensitive potassium channels modulate glucose transport in cultured human skeletal muscle cells. Endocr. J. (2001) 48:369–375.
  • KALMAN K, PENNINGTON MW, LANIGAN MD et al: ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. Biol. Chem. (1998) 273:32697–32707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.