67
Views
16
CrossRef citations to date
0
Altmetric
Review

Targeting mutated tyrosine kinases in the therapy of myeloid leukaemias

&
Pages 221-239 | Published online: 25 Feb 2005

Bibliography

  • VAN ETTEN RA: Studying the pathogenesis of BCR-ABL+ leukemia in mice. Oncogene (2002) 21:8643–8651.
  • DASH A, GILLILAND DG: Molecular genetics of acute myeloid leukaemia. BailBeres Best Piaci Res. Clin. Haeinatol (2001) 14:49–64.
  • GILLILAND DG: Hematologic malignancies. Curc Opin. Heinatol (2001) 8:189–191.
  • REUTHER GW, LAMBERT QT, CALIGIURI MA et al.: Identification and characterization of an activating TrIcA deletion mutation in acute myeloid leukemia. Ma Cell. Biol. (2000) 20:8655–8666.
  • EGUCHI M, EGUCHI-ISHIMAE M, TOJO A et al.: Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood(1999) 93:1355–1363.
  • VISSER M, HOFSTRA RM, STULP RP et al.: Absence of mutations in the RET gene in acute myeloid leukemia. Ann. Heinatol (1997) 75:87–90.
  • NOWELL PC, HUNGERFORD DA: Chromosome studies on normal and leukemic human leukocytes. Natl. Cancer Inst. (1960) 25:85–109.
  • ROWLEY JD: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature (1973) 243:290–293.
  • HEISTERKAMP N, STEPHENSON JR, GROFFEN J et al: Localization of the c-Abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia. Nature (1983) 306:239–242.
  • KURZROCK R, SHTALRID M, ROMERO P et al.: A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature (1987) 325:631–635.
  • PANE F, FRIGERI F, SINDONA M et al: Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood (1996) 88:2410–2414.
  • HEISTERKAMP N, STAM K, GROFFEN J et al.: Structural organization of the Bcr gene and its role in the Ph' translocation. Nature (1985) 315:758–760.
  • BEN-NERIAH Y, DALEY GQ, MESMASSON AM et al.: The chronic myelogenous leukemia-specific p210 protein is the product of the Bcr/Abl hybrid gene. Science (1986) 233:212–214.
  • SHTIVELMAN E, LIFSHITZ B, GALE RP et al.: Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature (1985) 315:550–554.
  • FAINSTEIN E, MARCELLE C, ROSNER A et al.: A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature (1987) 330:386–388.
  • CLARK SS, MCLAUGHLIN J, CRIST WM et al.: Unique forms of the abl tyrosine kinase distinguish Ph'-positive CML from Ph'-positive ALL. Science (1987) 235:85–88.
  • WALKER LC, GANESAN TS, DHUT S et al.: Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. Nature (1987) 329:851–853.
  • CHAN LC, KARHI KK, RAYTER SI et al: A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature (1987) 325:635–637.
  • DRUKER BJ, TAMURA S, BUCHDUNGER E et al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. (1996) 2:561–566.
  • ••Report shows that irnatinib is a specificinhibitor for BCR-ABL and is effective in reducing colony formation in primary CML cells.
  • DONATO NJ, TALPAZ M: Clinical use of tyrosine kinase inhibitors: therapy for chronic myelogenous leukemia and other cancers. Clin. Cancer Res. (2000) 6:2965–2966.
  • GOLDMAN JM: Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia. Lancet (2000) 355:1031–1032.
  • DEININGER MW, GOLDMAN JM, LYDON N et al.: The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood (1997) 90:3691–3698.
  • CARROLL M, OHNO-JONES S, TAMURA S et al: CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood (1997) 90:4947–4952.
  • WANG WL, HEALY ME, SATTLER M et al.: Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene (2000) 19:3521–3528.
  • BUCHDUNGER E, CIOFFI CL, LAW N et al.: Abl protein-tyrosine kinase inhibitor 5TI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. Phannacol Exp. Ther: (2000) 295:139–145.
  • KRYSTAL GW, HONSAWEK S, LITZ J et al.: The selective tyrosine kinase inhibitor 5TI571 inhibits small cell lung cancer growth. Clin. Cancer Res. (2000) 6:3319–3326.
  • HEINRICH MC, GRIFFITH DJ, DRUKER BJ et al.: Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood (2000) 96:925–932.
  • HUGHES TP, KAEDA J, BRANFORD S et al.: Frequency of major molecular responses to imatinib or interferon a plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl. Med. (2003) 349:1423–1432.
  • LOWENBERG B: Minimal residual diseasein chronic myeloid leukemia. N Engl. Med. (2003) 349:1399–1401.
  • GORRE ME, MOHAMMED M, ELLWOOD K et al: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science (2001) 293:876–880.
  • GRIFFIN JD: Resistance to targeted therapy in leukaemia. Lancet (2002) 359:458–459.
  • SCHINDLER T, BORNMANN W, PELLICENA Petal.: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science (2000) 289:1938–1942.
  • ••Important report on the mechanismof ABL tyrosine kinase inhibition by imatinib mesylate.
  • AZAM M, LATEK RR, DALEY GQ: Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell (2003) 112:831–843.
  • ••Comprehensive list of mutations that result in irnatinib mesylate resistance.
  • CHUANG TH, XU X, KAARTINEN V et al: Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family. Proc. Natl. Acad. ScL USA (1995) 92:10282–10286.
  • MCWHIRTER JR, GALASSO DL, WANG JY: A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Ma Cell. Biol. (1993) 13:7587–7595.
  • •Demonstrates the importance of the oligomerisation domain in BCR for activation of the ABL kinase.
  • GOLUB TR, GOGA A, BARKER GF et al: Oligomerization of the Abl tyrosine kinase by the Ets protein Tel in human leukemia. MM. Cell. Biol. (1996) 16:4107–4116.
  • HANTSCHEL 0, NAGAR B, GUETTLER S et al: A myristoyl/phosphotyrosine switch regulates c-Abl. Cell (2003) 112:845–857.
  • ••Study of the structural requirements forc-ABL activation.
  • NAGAR B, HANTSCHEL 0, YOUNG MA et al.: Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell (2003) 112:859–871.
  • ••Study of the structural requirements forc-ABL activation.
  • MILLION RP, VAN ETTEN RA: The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood(2000) 96:664–670.
  • ZHANG X, SUBRAHMANYAM R, WONG R et al: The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Ma Cell. Biol. (2001) 21:840–853.
  • PENDERGAST AM, QUILLIAM LA, CRIPE LD et al: BCR-ABL-induced oncogenesis is mediated by direct interaction with the 5H2 domain of the GRB-2 adaptor protein. Cell (1993) 75:175–185.
  • PUIL L, LIU J, GISH G et al: Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. (1994) 13:764–773.
  • AFAR DE, GOGA A, MCLAUGHLIN J et al.: Differential complementation of Bcr-Abl point mutants with c-Myc. Science (1994) 264:424–426.
  • SCITA G, TENCA P, FRITTOLI E et al: Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO (2000) 19:2393–2398.
  • SATTLER M, MOHI MG, PRIDE YB et al.: Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell (2002) 1:479–492.
  • •Demonstrates the requirement of Gab2 for BCR-ABL-mediated myeloid leukaemia.
  • TOKER A: Protein kinases as mediators of phosphoinositide 3-kinase signaling. MM. Phannacol (2000) 57:652–658.
  • RAMEH LE, CANTLEY LC: The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. (1999) 274:8347–8350.
  • ••This review focuses on PI3K and its role invarious cellular processes.
  • SATTLER M, SALGIA R, OKUDA K et al.: The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinosito1-3' kinase pathway. Oncogene (1996) 12:839–846.
  • VARTICOVSKI L, DALEY GQ, JACKSON P et al: Activation of phosphatidylinositol 3-kinase in cells expressing Abl oncogene variants. MM. Cell. Biol. (1991) 11:1107–1113.
  • SKORSKI T, KANAKARAJ P, NIEBOROWSKA-SKORSKA M et al.: Phosphatidylinosito1-3 kinase activity is regulated by bcr/abl and is required for the growth of philadelphia chromosome-positive cells. Blood (1995) 86:726–736.
  • BEDI A, GRIFFIN CA, BARBER JP et al:Growth factor-mediated terminal differentiation of chronic myeloid leukemia. Cancer Res. (1994) 54:5535–5538.
  • BEDI A, ZEHNBAUER BA, BARBER JPet al.: Inhibition of apoptosis by Bcr-Abl in chronic myeloid leukemia. Blood (1994) 83:2038–2044.
  • SKORSKI T, BELLACOSA A, NIEBOROWSKA-SKORSKA M et al.: Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. (1997) 16:6151–6161.
  • DATTA SR, DUDEK H, TAO X et al: Aid phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell (1997) 91:231–241.
  • BRUNET A, BONNI A, ZIGMOND MJ et al.: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell (1999) 96:857–868.
  • EVERS EE, ZONDAG GC, MALLIRI A et al.: Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer (2000) 36:1269–1274.
  • SCHMITZ AA, GOVEK EE, BOTTNER B et al.: Rho GTPases: signaling, migration, and invasion. Exp. Cell Res. (2000) 261:1–12.
  • SKORSKI T, WLODARSKI P, DAHERON L et al.: BCR/ABL-mediated leukemogenesis requires the activity of the small GTP-binding protein Rac. Proc. Natl. Acad. ScL USA (1998) 95:11858–11862.
  • WANG JY, LEDLEY F, GOFF S et al.: The mouse c-abl locus: molecular cloning and characterization. Cell (1984) 36:349–356.
  • TYBULEWICZ VL, CRAWFORD CE, JACKSON PK et al: Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Ce//(1991) 65:1153–1163.
  • SCHWARTZBERG PL, STALL AM, HARDIN JD et al: Mice homozygous for the ABLml mutation show poor viability and depletion of selected B and T cell populations. Cell (1991) 65:1165–1175.
  • LI B, BOASTS, DE LOS SANTOS K et al.: Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat. Genet. (2000) 24:304–308.
  • KHARBANDA S, REN R, PANDEY P et al.: Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature (1995) 376:785–788.
  • WELCH PJ, WANG JY: A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell (1993) 75:779–790.
  • YUAN ZM, HUANG YY, WHANG Y et al.: Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature (1996) 382:272–274.
  • PENDERGAST AM, GISHIZKY ML, HAVLIK MH et al: SH1 domain autophosphorylation of p210 BCR/ABL is required for transformation but not growth factor independence. MM. Cell. Biol. (1993) 13:1728–1736.
  • BARILA D, SUPERTI-FURGA G: An intramolecular SH3-domain interaction regulates c-Abl activity. Nat. Genet. (1998) 18:280–282.
  • MCWHIRTERJ, WANG J: Activation of tyrosine kinase and microfilament-binding functions of c-Ab/ by Bcr sequences in Bcr/Ab/fusion proteins. Ma Cell. Biol. (1991) 11:1553–1565.
  • HEISTERKAMP N, VONCKEN JW, SENADHEERA D et al.: Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants. Blood (2000) 96:2226–2232.
  • DANHAUSER-RIEDL S, WARMUTH M, DRUKER BJ et al: Activation of Src kinases p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res. (1996) 56:3589–3596.
  • DONATO NJ, WU JY, STAPLEY J et al.: BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to ST1571. Blood(2003) 101:690–698.
  • PTASZNIK A, URBANOWSKA E, CHINTA S et al.: Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells. J. Exp. Med. (2002) 196:667–678.
  • LIONBERGER JM, WILSON MB, SMITHGALL TE: Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck. Biol. Chem. (2000) 275:18581–18585.
  • KLEJMAN A, SCHREINER SJ, NIEBOROWSKA-SKORSKA M et al.: The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J. (2002) 21:5766–5774.
  • CARLESSO N, FRANK DA, GRIFFIN JD: Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by BCR/ABL. J. Exp. Med. (1996) 183:811–820.
  • SHUAI K, HALPERN J, TENHOEVE J et al.: Constitutive activation of Stat5 by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene (1996) 13:247–254.
  • SEXL V, PIEKORZ R, MORIGGL R et al.:Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood (2000) 96:2277–2283.
  • ONISHI M, NOSAKA T, MISAWA K et al.: Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. MM. Cell. Biol. (1998) 18:3871–3879.
  • SATTLER M, VERMA S, SHRIKHANDE G et al.: The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J. Biol. Chem. (2000) 275:24273–24278.
  • BURDON RH: Superoxide and hydrogenperoxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. (1995) 18:775–794.
  • DENU JM, TANNER KG: Specific andreversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry (Most) (1998) 37:5633–5642.
  • MONTEIRO HP, STERN A: Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radic. Biol. Med. (1996) 21:323–333.
  • SUH YA, ARNOLD RS, LASSEGUE B et al.: Cell transformation by the superoxide-generating oxidase Moxl. Nature (1999) 401:79–82.
  • •Report demonstrated the potential role of superoxide in cell growth and transformation.
  • BETSHOLTZ C, KARLSSON L, LINDAHL P: Developmental roles of platelet-derived growth factors. Bioessays (2001) 23:494–507.
  • ••This review focuses on PDGFR and its rolein development.
  • UREN A, MERCHANT MS, SUN CJ et al.: 13-platelet-derived growth factor receptor mediates motility and growth of Ewing's sarcoma cells. Oncogene (2003) 22:2334–2342.
  • STEHR M, ADAM RIVI, KHOURY J et al.: Platelet derived growth factor-BB is a potent mitogen for rat ureteral and human bladder smooth muscle cells: dependence on lipid rafts for cell signaling. Urol. (2003) 169:1165–1170.
  • LAURENT M, MARTINERIE C, THIBOUT H et al: NOVH increases MMP3 expression and cell migration in glioblastoma cells via a PDGFRa-dependent mechanism. FASEB J. (2003) 17:1919–1921.
  • VAZIRI C, FALLER DV: Down-regulation of platelet-derived growth factor receptor expression during terminal differentiation of 3T3-L1 pre-adipocyte fibroblasts. J. Biol. Chem. (1996) 271:13642–13648.
  • MATSUI T, HEIDARAN M, MIKI T et al.: Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science (1989) 243:800–804.
  • BERGSTEN E, UUTELA M, LI X et al.: PDGF-D is a specific, protease-activated ligand for the PDGF 13-receptor. Nat. Cell Biol. (2001) 3:512–516.
  • HUWILER A, FABBRO D, PFEILSCHIFTER J: Platelet-derived growth factor stimulates de novo synthesis of mitogen-activated protein kinase in renal mesangial cells. Eur: Biochem. (1995) 227:209–213.
  • YU J, LIU XW, KIM HR: Platelet-derived growth factor (PDGF) receptor-a-activated c-Jun NH2-terminal kinase-1 is critical for PDGF-induced p21WAF1/CIP1 promoter activity independent of p53. I. Biol. Chem. (2003) 278:49582–49588.
  • MORIYA S, KAZLAUSKAS A, AKIMOTO K et al.: Platelet-derived growth factor activates protein kinase C epsilon through redundant and independent signaling pathways involving phospholipase C 7 or phosphatidylinositol 3-kinase. Proc. Nati Acad. Sci. USA (1996) 93:151–155.
  • HOOSHMAND-RAD R, LU L, HELDIN CH et al.: Platelet-derived growth factor-mediated signaling through the Shb adaptor protein: effects on cytoskeletal organization. Exp. Cell Res. (2000) 257:245–254.
  • MORI S, RONNSTRAND L, YOKOTE K et al.: Identification of two juxtamembrane autophosphorylation sites in the PDGFP-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J. (1993) 12:2257–2264.
  • SACHSENMAIER C, SADOWSKI HB, COOPER JA: STAT activation by the PDGF receptor requires juxtamembrane phosphorylation sites but not Src tyrosine kinase activation. Oncogene (1999) 18:3583–3592.
  • TWAMLEY-STEIN GM, PEPPERKOK R, ANSORGE W et al.: The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc. Nati Acad. Sci. USA (1993) 90:7696–7700.
  • BARONE MV, COURTNEIDGE SA: Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src. Nature (1995) 378:509–512.
  • TOMASSON MH, STERNBERG DW, WILLIAMS IR et al.: Fatal myeloproliferation, induced in mice by TEL/PDGFRI3 expression, depends on PDGFRI3 tyrosines 579/581.1 Gin. Invest. (2000) 105:423–432.
  • IRUSTA PM, DIMAIO D: A single amino acid substitution in a WW-like domain of diverse members of the PDGF receptor subfamily of tyrosine kinases causes constitutive receptor activation. EMBO J. (1998) 17:6912–6923.
  • SCHWALLER J, ANASTASIADOU E, CAIN D et al.: H4(D105170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor 13 gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood (2001) 97:3910–3918.
  • ARVIDSSON AK, RUPP E, NANBERG E et al: Tyr-716 in the platelet-derived growth factor 13-receptor kinase insert is involved in GRB2 binding and Ras activation. Ma Cell. Biol. (1994) 14:6715–6726.
  • YOKOTE K, MARGOLIS B, HELDIN CH et al: Grb7 is a downstream signaling component of platelet-derived growth factor a- and 13-receptors. J. Biol. Chem. (1996) 271:30942–30949.
  • KASHISHIAN A, KAZLAUSKAS A, COOPER JA: Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI3 kinase in vivo. EMBO J. (1992) 11:1373–1382.
  • NISHIMURA R, LI W, KASHISHIAN A et al.: Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Mol. Cell. Biol. (1993) 13:6889–6896.
  • RONNSTRAND L, ARVIDSSON AK, KALLIN A et al.: SHP-2 binds to Tyr763 and Tyr1009 in the PDGF 13-receptor and mediates PDGF-induced activation of the Ras/MAP kinase pathway and chemotaxis. Oncogene (1999) 18:3696–3702.
  • CHEN M, SHE H, KIM A et al: Nckl3 adapter regulates actin polymerization in NIH 3T3 fibroblasts in response to platelet-derived growth factor bb. Ma Cell. Biol. (2000) 20:7867–7880.
  • HIWATARI M, MASAHIRO T, RYOJI H, TERUAKI H, MASAHIRO S: Mutation of c-KIT and platelet-derived growth factor receptor (PDGFR) genes in childhood acute myeloid leukemia and leukemic cell lines. Blood (2003):102: Abstract 3218.
  • COOLS J, DEANGELO DJ, GOTLIB J et al.: A tyrosine kinase created by fusion of the PDGFRa and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. (2003) 348:1201–1214.
  • •Publication reports on the novel FIP1L1-PDGFRa translocation and its sensitivity to imatinib and PKC412.
  • PARDANANI A, KETTERLING RP, BROCKMAN SR et al.: CHIC2 deletion, a surrogate for FIP1L1-PDGFRa fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood (2003) 102:3093–3096.
  • COOLS J, QUENTMEIER H, HUNTLY BJ et al.: The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRa positive chronic eosinophilic leukemia. Blood (2004) 103:2802–2805.
  • COOLS J, STOVER EH, BOULTON CL et al: PKC412 overcomes resistance to imatinib in a murine model of FIP1L 1-PD GFRa-induced myeloproliferative disease. Cancer Cell (2003) 3:459–469.
  • GOLUB T, BAKER G, LOVETT M et al.: Fusion of PDGF receptor 13 to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell (1994) 77:307–316.
  • •First report to publish the TEL-PDGFR fusion in CMML.
  • DIEROV J, XU Q, DIEROVA R et al: TEL/platelet-derived growth factor receptor 13 activates phosphatidylinositol 3 (PI3) kinase and requires PI3 kinase to regulate the cell cycle. Blood (2002) 99: 1758-1765.
  • ABE A, EMI N, TANIMOTO M et al: Fusion of the platelet-derived growth factor receptor 13 to a novel gene CEV14 in acute myelogenous leukemia after clonal evolution. Blood (1997) 90:4271–4277.
  • KULKARNI S, HEATH C, PARKER S et al: Fusion of H4/D105170 to the platelet-derived growth factor receptor 13 in BCR-ABL-negative myeloproliferative disorders with a t(5;10) (q33;q21). Cancer Res. (2000) 60:3592–3598.
  • WILKINSON K, VELLOSO ER, LOPES LF et al.: Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRI3 and response to imatinib. Blood (2003) 102:4187–4190.
  • MAGNUSSON MK, MEADE KE, NAKAMURA R et al.: Activity of 5TI571 in chronic myelomonocytic leukemia with a platelet-derived growth factor 13 receptor fusion oncogene. Blood (2002) 100:1088–1091.
  • TOMASSON MH, STERNBERG DW, WILLIAMS IR et al.: Fatal myeloproliferation, induced in mice by TEL/PDGFRI3 expression, depends on PDGFRI3 tyrosines 579/581. Gin. Invest. (2000) 105:423–432.
  • HEINRICH MC, GIESE NA, SCHITTENHELM M: MLN518, a potent FLT3 inhibitor, displays synergistic effects with cytarabine and daunorubicin on FLT3 ITD leukemia cell lines. Blood (2003):102: Abstract 330.
  • MENEZES DLS, WIESMANN M, VORA J et al.: Preclinical pharmacology of FLT3 kinase inhibitor CHIR258LC in the treatment of xenograft tumors of human acute myelogenous leukemia. Blood (2003):102: Abstract 1403.
  • CAIN J, TOMASSON MH: Complete remission, but not cure, of myeloproliferative disease by SU11657 in a murine TEL/PDGFRI3 bone marrow transplant model. Blood (2003):102: Abstract 2436.
  • ROSNET 0, MATTEI MG, MARCHETTO S et al.: Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Cenomics (1991) 9:380–385.
  • MATTHEWS W, JORDAN CT, WIEGAND GW et al.: A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Ce//(1991) 65:1143–1152.
  • ROSNET 0, SCHIFF C, PEBUSQUE MJ et al.: Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood (1993) 82:1110–1119.
  • SMALL D, LEVENSTEIN M, KIM E et al.: STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc. Natl. Acad. Sci. USA (1994) 91:459–463.
  • HANNUM C, CULPEPPER J, CAMPBELL D et al.: Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature (1994) 368:643–648.
  • LYMAN SD, JAMES L, VANDEN BOS T et al.: Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell (1993) 75:1157–1167.
  • BIRG F, COURCOUL M, ROSNET 0 et al.: Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood (1992) 80:2584–2593.
  • CAROW CE, KIM E, HAWKINS AL et al.: Localization of the human stem cell tyrosine kinase-1 gene (FLT3) to 13q12-> q13. Cytogenet. Cell Genet. (1995) 70:255–257.
  • LISOVSKY M, ESTROV Z, ZHANG X et al.: F1t3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of Bc1-2 and Bax. Blood (1996) 88:3987–3997.
  • MCKENNA HJ, SMITH FO, BRASEL K et al: Effects of flt3 ligand on acute myeloid and lymphocytic leukemic blast cells from children. Exp. Hematol (1996) 24:378–385.
  • •Describes the phenotype of mice with F/t3 gene disruption.
  • PIACIBELLO W, GAMMAITONI L, BRUNO S et al.: Negative influence of IL3 on the expansion of human cord blood in vivo long-term repopulating stem cells. Hematother. Stem Cell Res. (2000) 9:945–956.
  • DOSIL M, WANG S, LEMISCHKA IR: Mitogenic signalling and substrate specificity of the F1k2/F1t3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Ma Cell. Biol. (1993) 13:6572–6585.
  • MARCHETTO S, FOURNIER E, BESLU N et al.: SHC and SHIP phosphorylation and interaction in response to activation of the FLT3 receptor. Leukemia (1999) 13:1374–1382.
  • ROTTAPEL R, TURCK CW, CASTERAN N et al: Substrate specificities and identification of a putative binding site for PI3K in the carboxy tail of the murine F1t3 receptor tyrosine kinase. Oncogene (1994) 9: 1755-1765.
  • ZHANG S, FUKUDA S, LEE Y et al: Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for F1t3-dependent signaling. Exp. Med. (2000) 192:719–728.
  • MACKAREHTSCHIAN K, HARDIN JD, MOORE KA et al.: Targeted disruption of the flk2/f1t3 gene leads to deficiencies in primitive hematopoietic progenitors. ImmunM, (1995) 3:147–161.
  • MCKENNA HJ, STOCKING KL, MILLER RE et al.: Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood (2000) 95:3489–3497.
  • OZEKI K, KIYOI H, HIROSE Y et al: Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood (2004) 103: 1901-1908.
  • STIREWALT DL, KOPECKY KJ, MESHINCHI S et al: FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood (2001) 97:3589–3595.
  • NAKAO M, YOKOTA S, IWAI T et al: Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia (1996) 10: 1911-1918.
  • KIYOI H, NAOE T, YOKOTA S et al: Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia (1997) 11:1447–1452.
  • MESHINCHI S, WOODS WG, STIRE WALT DL et al.: Prevalence and prognostic significance of F1t3 internal tandem duplication in pediatric acute myeloid leukemia. Blood (2001) 97:89–94.
  • ROMBOUTS WJ, BLOKLAND I, LOWENBERG B et al: Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the F1t3 gene. Leukemia (2000) 14:675–683.
  • XU F, TAKI T, YANG HW et al: Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br. Haematol (1999) 105:155–162.
  • WHITMAN SP, ARCHER KJ, FENG L et al.: Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. (2001) 61:7233–7239.
  • KELLY LM, LIU Q, KUTOK JL et al: FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood (2002) 99:310–318.
  • ABU-DUHIER FM, GOODEVE AC, WILSON GA et al.: Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br. Haematol (2001) 113:983–988.
  • YAMAMOTO Y, KIYOI H, NAKANO Y et al.: Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood (2001) 97:2434–2439.
  • TSE KF, NOVELLI E, CIVIN CI et al: Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia (2001) 15:1001–1010.
  • LEVIS M, TSE KF, SMITH BD et al: A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood (2001) 98:885–887.
  • NAOE T, KIYOE H, YAMAMOTO Y et al.: FLT3 tyrosine kinase as a target molecule for selective antileukemia therapy. Cancer Chemother. Pliarmacol (2001) 48:S27–S30.
  • KELLY LM, YU JC, BOULTON CL et al: CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell (2002) 1:421–432.
  • YU J-C, APATIRA M, LI J et al: FLT3 antagonism as a strategy for the treatment of acute myeloid leukemia (AML). Blood (2001) 98:721a.
  • ALLEBACH J, LEVIS M, FAI-TSE K et al.: FLT3-targeted tyrosine kinase inhibitors inhibit proliferation, induce apoptosis, and improve survival in a murine leukemia model utilizing FLT3/ITD-transformed cells. Blood (2001) 89:118a.
  • LEVIS MJ, ALLEBACH J, TSE KF et al.: FLT3-targeted inhibitors kill FLT3-dependent modeled cells, leukemia-derived cell lines, and primary AML blasts M vitro and in vivo. Blood (2001):721a.
  • O'FARRELL A, ABRAMS T, YUEN H et al.: SUGEN compounds 5U5416 and SU11248 inhibit F1t3 activity: therapeutic application in AML. Blood (2001) 89:118a.
  • YEE K, O'FARRELL A, SMOLICH B et al: 5U5416 and 5U5614 inhibit wild-type and activated mutant FLT3 signaling in leukemia cells. Blood (2001) 89:838a.
  • MEYER T, REGENASS U, FABBRO D et al.: A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and M vitro anti-proliferative as well as M vivo anti-tumor activity. Int. J. Cancer (1989) 43:851–856.
  • PROPPER DJ, MCDONALD AC, MAN A et al.: Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. Clin. Oncol. (2001) 19:1485–1492.
  • WEISBERG E, BOULTON C, KELLY LM et al.: Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell (2002) 1:433–443.
  • BESMER P, MURPHY JE, GEORGE PC et al.: A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature (1986) 320:415–421.
  • MARTIN FH, SUGGS SV, LANGLEY KE et al.: Primary structure and functional expression of rat and human stem cell factor DNAs. Cell(1990) 63:203–211.
  • ZSEBO KM, WILLIAMS DA, GEISSLER EN et al.: Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell(1990) 63:213–224.
  • ZSEBO KM, WYPYCH J, MCNIECE IK et al.: Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell (1990) 63:195–201.
  • CHABOT B, STEPHENSON DA, CHAPMAN VM et al.: The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature (1988) 335:88–89.
  • GEISSLER EN, RYAN MA, HOUSMAN DE The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell (1988) 55:185–192.
  • HIROTA S, ISOZAKI K, MORIYAMA Y et al.: Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science (1998) 279:577–580.
  • NAKAHARA M, ISOZAKI K, HIROTA S et al.: A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology (1998) 115:1090–1095.
  • NISHIDA T, HIROTA S, TANIGUCHI M et al.: Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat. Genet. (1998) 19:323–324.
  • LONGLEY BJ Jr, METCALFE DD, THARP M et al.: Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc. Nati Acad. Sci. USA (1999) 96:1609–1614.
  • MIDDELKAMP HUP MA, HEIDE R, TANK B et al.: Comparison of mastocytosis with onset in children and adults. Eur. Acad. Dermatol. Venereol. (2002) 16:115–120.
  • THARP MD, LONGLEY BJ Jr: Mastocytosis. Dermatol. Clin. (2001) 19:679-696, viii-ix.
  • SIMPSON JK, METCALFE DD: Mastocytosis and disorders of mast cell proliferation. Clin. Rev Allergy Immunol. (2002) 22:175–188.
  • NAGATA H, WOROBEC AS, OH CK et al.: Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc. Natl. Acad. Sci. USA (1995) 92:10560–10564.
  • KANAKURA Y, FURITSU T, TSUJIMURA T et al.: Activating mutations of the c-kit proto-oncogene in a human mast cell leukemia cell line. Leukemia (1994) 8\(Suppl. 1):518–522.
  • FURITSU T, TSUJIMURA T, TONO T et al.: Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J. Gin. Invest. (1993) 92:1736–1744.
  • MA Y, ZENG S, METCALFE DD et al.: The c-KIT mutation causing human mastocytosis is resistant to 5TI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood (2002) 99: 1741-1744.
  • NAKATA Y, KIMURA A, KATOH 0 et al.: c-kit point mutation of extracellular domain in patients with myeloproliferative disorders. Br. J. Haematol. (1995) 91:661–663.
  • CASTERAN N, DE SEPULVEDA P, BESLU N et al.: Signal transduction by several KIT juxtamembrane domain mutations. Oncogene (2003) 22:4710–4722.
  • IKEDA H, KANAKURA Y, TAMAKI T et al.: Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood (1991) 78:2962–2968.
  • GARI M, GOODEVE A, WILSON G et al.: c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br. J. Haematol. (1999) 105:894–900.
  • BEGHINI A, PETERLONGO P, RIPAMONTI CB et al.: C-kit mutations in core binding factor leukemias. Blood (2000) 95:726–727.
  • YARDEN Y, KUANG WJ, YANG-FENG T et al.: Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. (1987) 6:3341–3351.
  • REITH AD, ELLIS C, LYMAN SD et al.: Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J. (1991) 10:2451–2459.
  • ZHU WM, DONG WE MINDEN M: Alternate splicing creates two forms of the human kit protein. Leak. Lymphoma (1994) 12:441–447.
  • HAYASHI S, KUNISADA T, OGAWA M et al.: Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nucleic Acids Res. (1991) 19:1267–1271.
  • ROTTAPEL R, REEDIJK M, WILLIAMS DE et al.: The SteelAW transduction pathway: kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Ma Cell. Biol. (1991) 11:3043–3051.
  • TAUCHI T, FENG GS, MARSHALL MS et al.: The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells. J. Biol. Chem. (1994) 269:25206–25211.
  • YI T, IHLE JN: Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. MM. Cell. Biol. (1993) 13:3350–3358.
  • VOYTYUK 0, LENNARTSSON J, MOGI A et al: Src family kinases are involved in the differential signaling from two splice forms of c-Kit. J. Biol. Chem. (2003) 278:9159–9166.
  • PRICE DJ, RIVNAY B, FU Y et al.: Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes. J. Biol. Chem. (1997) 272:5915–5920.
  • LINNEKIN D, DEBERRY CS, MOU S: Lyn associates with the juxtamembrane region of c-Kit and is activated by stem cell factor in hematopoietic cell lines and normal progenitor cells. J. Biol. Chem. (1997) 272:27450–27455.
  • LENNARTSSON J, BLUME-JENSEN P, HERMANSON M et al.: Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene (1999) 18:5546–5553.
  • KRYSTAL GW, DEBERRY CS, LINNEKIN D et al.: Lck associates with and is activated by Kit in a small cell lung cancer cell line: inhibition of SCF-mediated growth by the Src family kinase inhibitor PPl. Cancer Res. (1998) 58:4660–4666.
  • SERVE H, HSU YC, BESMER P: Tyrosine residue 719 of the c-kit receptor is essential for binding of the p85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells. J. Biol. Chem. (1994) 269:6026–6030.
  • LEV S, GIVOL D, YARDEN Y: Interkinase domain of kit contains the binding site for phosphatidylinositol 3' kinase. Proc. Nati Acad. Sci. USA (1992) 89:678–682.
  • NISHIDA K, YOSHIDA Y, ITOH M et al.: Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood(1999) 93:1809-1816. zoo. BRIZZI MF, ZINI MG, ARONICA MG et al.: Convergence of signaling by interleukin-3, granulocyte-macrophage colony-stimulating factor, and mast cell growth factor on JAK2 tyrosine kinase. Biol. Chem. (1994) 269:31680–31684.
  • WEILER SR, MOU S, DEBERRY CS et al.: JAK2 is associated with the c-kit proto-oncogene product and is phosphorylated in response to stem cell factor. Blood (1996) 87:3688–3693.
  • NEUBAUER H, CUMANO A, MULLER M et al.: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell (1998) 93:397–409.
  • PARGANAS E, WANG D, STRAVOPODIS D et al.: Jak2 is essential for signaling through a variety of cytokine receptors. Ce//(1998) 93:385–395.
  • ZHAO S, ZOLLER K, MASUKO M et al.: JAK2, complemented by a second signal from c-kit or flt-3, triggers extensive self-renewal of primary multipotential hemopoietic cells. EMBO (2002) 21:2159–2167.
  • THOMMES K, LENNARTSSON J, CARLBERG M et al.: Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochem. J. (1999) 341(Pt 1):211–216.
  • HERBST R, SHEARMAN MS, JALLAL B et al.: Formation of signal transfer complexes between stem cell and platelet-derived growth factor receptors and 5H2 domain proteins M vitro. Biochemistry (Mosc) (1995) 34:5971–5979.
  • PLO I, LAUTIER D, CASTERAN N et aL: Kit signaling and negative regulation of daunorubicin-induced apoptosis: role of phospholipase Cy. Oncogene (2001) 20:6752–6763.
  • KOZLOWSKI M, LAROSE L, LEE F et al.: SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Ma Cell. Biol. (1998) 18:2089–2099.
  • LORENZ U, BERGEMANN AD, STEINBERG HN et al.: Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1. j. Exp. Med. (1996) 184:1111–1126.
  • PAULSON RE VESELY S, SIMINOVITCH KA et al.: Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp 1. Nat. Genet. (1996) 13:309–315.
  • HUBER M, HELGASON CD, SCHEID MP et al.: Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. (1998) 17:7311–7319.
  • •Describes the phenotype of mice with SHIP1 gene disruption.
  • BLUME-JENSEN P, SIEGBAHN A, STABEL S et al.: Increased Kit/SCF receptor induced mitogenicity but abolished cell motility after inhibition of protein kinase C. EMBO J. (1993) 12:4199–4209.
  • BLUME-JENSEN P, RONNSTRAND L, GOUT I et al: Modulation of Kit/stem cell factor receptor-induced signaling by protein kinase C. J. Biol. Chem. (1994) 269:21793–21802.
  • BLUME-JENSEN P, WERNSTEDT C, HELDIN CH et al.: Identification of the major phosphorylation sites for protein kinase C in kit/stem cell factor receptor M vitro and in intact cells. J. Biol. Chem. (1995) 270:14192–14200.
  • BRIZZI ME BLECHMAN JM, CAVALLONI G et al: Protein kinase C-dependent release of a functional whole extracellular domain of the mast cell growth factor (MGF) receptor by MGF-dependent human myeloid cells. Oncogene (1994) 9:1583–1589.
  • KRYSTAL G: Lipid phosphatases in the immune system. Semin. Immunol (2000) 12:397–403.
  • ••This review focuses on phosphatases andtheir role in immune cells.
  • BUCHDUNGER E, ZIMMERMANN J, METT H et al.: Inhibition of the Abl protein-tyrosine kinase M vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. (1996) 56:100–104.
  • JOENSUU H, ROBERTS PJ, SARLOMO-RIKALA M et al: Effect of the tyrosine kinase inhibitor 5TI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl. J. Med. (2001) 344:1052–1056.
  • TUVESON DA, WILLIS NA, JACKS T et al.: STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene (2001) 20:5054–5058.
  • WISNIEWSKI D, LAMBEK CL, LIU C et al.: Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res. (2002) 62:4244–4255.
  • KRYSTAL GW, HONSAWEK S, KIEWLICH D et al.: Indolinone tyrosine kinase inhibitors block Kit activation and growth of small cell lung cancer cells. Cancer Res. (2001) 61:3660–3668.
  • SMOLICH BD, YUEN HA, WEST KA et al.: The antiangiogenic protein kinase inhibitors 5U5416 and 5U6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood (2001) 97:1413–1421.
  • KOVALENKO M, GAZIT A, BOHMER A et al.: Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res. (1994) 54:6106–6114.
  • CAPLEN NJ, PARRISH S, IMANI F et al: Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA (2001) 98:9742–9747.
  • ELBASHIR SM, LENDECKEL W, TUSCHL T: RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. (2001) 15:188–200.
  • ••Useful introduction to RNAi technology.
  • SCHERR M, BATTMER K, WINKLER T et al.: Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood (2003) 101:1566–1569.
  • SCHERER LJ, ROSSI JJ: Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol (2003) 21:1457–1465.
  • SHELBURNE CP, HUFF TF: Inhibition of kit expression in P815 mouse mastocytoma cells by a hammerhead ribozyme. Clin. Immunol (1999) 93:46–58.
  • TONG AW, ZHANG YA, CUNNINGHAM C et al: Potential clinical application of antioncogene ribozymes for human lung cancer. Clin. Lung Cancer (2001) 2:220–226.
  • •Investigates the potential clinical application of ribozymes against human cancers.
  • NISHIUCHI R YQ, WEIGEL B, KERSEY JH: The geldanamycin derivative, 17-AAG, an inhibitor of the molecular chaperone heat shock protein 90, targets FLT3 and other protein kinases in human leukemia cells. Blood (2003):102: Abstract 2308.
  • YAO Q, NISHIUCHI R, LI Q et al: FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin. Cancer Res. (2003) 9:4483–4493.
  • SATTLER M, QUINNAN LR, PRIDE YB et al.: 2-methoxyestradiol alters cell motility, migration, and adhesion. Blood (2003) 102:289–296.
  • KURZROCK R, KANTARJIAN HM, CORTES JE et al.: Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the Phase I setting. Blood(2003) 102:4527–4534.
  • ADJEI AA, ERLICHMAN C, DAVIS JN et al.: A Phase I trial of the farnesyl transferase inhibitor 5CH66336: evidence for biological and clinical activity. Cancer Res. (2000) 60:1871–1877.
  • RAVANDI F, TALPAZ M, ESTROV Z: Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin. Cancer Res. (2003) 9:535–550.
  • SEYNAEVE CM, KAZANIETZ MG, BLUMBERG PM et al.: Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. MM. Pharmacol (1994) 45:1207–1214.
  • THAVASU P, PROPPER D, MCDONALD A et al.: The protein kinase C inhibitor CGP41251 suppresses cytokine release and extracellular signal-regulated kinase 2 expression in cancer patients. Cancer Res. (1999) 59:3980–3984.
  • POWIS G, BONJOUKLIAN R, BERGGREN MM et al: Wortmannin, a potent and selective inhibitor of phosphatidylinosito1-3-kinase. Cancer Res. (1994) 54:2419–2423.
  • VLAHOS CJ, MATTER WE HUI KY et al.: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholiny1)-8-pheny1-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. (1994) 269:5241–5248.
  • ZHENG R, FRIEDMAN AD, SMALL D: Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dc13 cells caused by expression of FLT3/ITD mutations. Blood (2002) 100:4154–4161.
  • PANDEY A, VOLKOTS DL, SEROOGY JM et al.: Identification of orally active, potent, and selective 4-piperazinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family.' Med. Chem. (2002) 45:3772–3793.
  • AHN JY KK, SMALL D: The FLT3 receptor tyrosine kinase inhibitor CEP5214 induces apoptotic cell death through down-regulation of Mc11. Blood (2003)102: Abstract 4501.
  • BROWN PA MS, BERNSTEIN ID, ARCECI RJ, SMALL D: CEP-701 and CEP-5214, FLT3 tyrosine kinase inhibitors, are selectively cytotoxic to pediatric AML blasts with FLT3 internal tandem duplications. Blood (2003):102: Abstract 2202.
  • SANZ MA, LO COCO F, MARTIN G et al.: Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood(2000) 96:1247–1253.
  • LOWENBERG B, GRIFFIN JD, TALLMAN MS: Acute myeloid leukemia and acute promyelocytic leukemia. Hematology (Am. Soc. Hematol Educ. Program) (2003) :82–101.
  • ABRAMS TJ, LEE LB, MURRAY LJ et al.: SU11248 inhibits KIT and platelet-derived growth factor receptor 13 in preclinical models of human small cell lung cancer. MM. Cancer The]: (2003) 2:471–478.
  • ROSKOSKI R Jr: STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochem. Biophys. Res. Commun. (2003) 309:709–717.
  • WARMUTH M, SIMON N, MITINA 0 et al.: Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood (2003) 101:664–672.
  • SIMON N SC, HALLEK MJ: The dual-specific Src and Abl kinase inhibitor (SAKI) CGP76030 overcomes imatinib mesylate resistance in murine bone marrow cells transformed by Bcr-Abl. Blood (2003)102. Abstract 3199.
  • O'HARE TSE, ABDULLAH OM, DEININGER MW et al: Potent inhibition of imatinib-resistant variants of Bcr-Abl by a novel dual selective Src/Abl kinase inhibitor AP23464: implications for CML therapy. Blood (2003) 102. Abstract 59.
  • CAZZANIGA G, TOSI S, ALOISI A et al.: The tyrosine kinase abl-related gene ARG is fused to ETV6 in an AML- M4Eo patient with a t(1;12)(q25;p13): molecular cloning of both reciprocal transcripts. Blood (1999) 94:4370–4373.
  • GOLUB TR, BARKER GE LOVETT M et al.: Fusion of PDGF receptor 13 to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell (1994) 77:307–316.
  • MAGNUSSON MK, MEADE KE, BROWN KE et al: Rabaptin-5 is a novel fusion partner to platelet-derived growth factor 13 receptor in chronic myelomonocytic leukemia. Blood (2001) 98:2518–2525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.