155
Views
67
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of target of rapamycin inhibitors

&
Pages 551-564 | Published online: 25 Feb 2005

Bibliography

  • HEITMAN J, MOVVA NR, HALL MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science (1991) 253:905–909.
  • ••Identified TOR1 and TOR2 in yeast asthe targets of rapamycin.
  • KOLTIN Y, FAUCETTE L, BERGSMA DJ et al: Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol. Cell. Biol. (1991) 11:1718–1723.
  • HELLI WELL SB, WAGNER P, KUNZ J, DEUTER-REINHARD M, HENRIQUEZ R, HALL MN: TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell (1994) 5:105–118.
  • KUNZ J, SCHNEIDER U, HOWALD I, SCHMIDT A, HALL MN: HEAT repeats mediate plasma membrane localization of Tor2p in yeast." Biol. Chem. (2000) 275:37011–37020.
  • POWERS T, DILOVA I, CHEN CY, WEDAMAN K: Yeast TOR signaling: a mechanism for metabolic regulation. Curr. Top. Microbial. Immunol (2004) 279:39–51.
  • •The volume in which this chapter is published focuses on mTOR and contains a number of informative chapters by investigators in the field.
  • KAMADA Y, FUNAKOSHI T, SHINTANI T, NAGANO K, OHSUMI M, OHSUMI Y: Tor-mediated induction of autophagy via an Apgl protein kinase complex. ./. Cell Biol. (2000) 150:1507–1513.
  • BROWN EJ, ALBERS MW, SHIN TB et al.: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature (1994) 369:756–758.
  • SABATINI DM, ERDJUMENT-BROMAGE H, LUI M, TEMPST P, SNYDER SH: RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell (1994) 78:35–43.
  • SABERS CJ, MARTIN MM, BRUNN GJ et al.: Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells." Biol. Chem. (1995) 270:815–822.
  • KEITH CT, SCHREIBER SL: PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science (1995) 270:50–51.
  • ABRAHAM RT: Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. (2001) 15:2177–2196.
  • BOSOTTI R, ISACCHI A, SONNHAMMER EL: FAT: a novel domain in PIK-related kinases. Trends Biochem. Sci. (2000) 25:225–227.
  • CHEN J, ZHENG XF, BROWN EJ, SCHREIBER SL: Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Nati Acad. Li. USA (1995) 92:4947–4951.
  • CHOI J, CHEN J, SCHREIBER SL, CLARDY J: Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science (1996) 273:239–242.
  • ••Presented the crystal structure of mTOR,rapamycin and FKBP12.
  • SCOTT PH, BRUNN GJ, KOHN AD, ROTH RA, LAWRENCE JC Jr: Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Nati Acad. Sci. USA (1998) 95:7772–7777.
  • NAVE B T, OUWENS M, WITHERS DJ, ALESSI DR, SHEPHERD PR: Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. (1999) 344(Pt 2):427–431.
  • SEKULIC A, HUDSON CC, HOMME JL et al.: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. (2000) 60:3504–3513.
  • GINGRAS AC, KENNEDY SG, O'LEARY MA, SONENBERG N, HAY N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. (1998) 12:502–513.
  • CHUNG J, GRAMMER TC, LEMON KP, KAZLAUSKAS A, BLENIS J: PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature (1994) 370:71–75.
  • ULLRICH A, SCHLESSINGER J: Signal transduction by receptors with tyrosine kinase activity. Cell (1990) 61:203–212.
  • UEKI K, ALGENSTAEDT P, MAUVAIS-JARVIS F, KAHN CR: Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol. Cell. Biol. (2000) 20:8035–8046.
  • WHITMAN M, DOWNES CP, KEELER M, KELLER T, CANTLEY L: Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature (1988) 332:644–646.
  • CHAN TO, RITTENHOUSE SE, TSICHLIS PN: AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Ann. Rev Biochem. (1999) 68:965–1014.
  • DELCOMMENNE M, TAN C, GRAY V, RUE L, WOODGETT J, DEDHAR S: Phosphoinositide-3-0H kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA (1998) 95:11211–11216.
  • PERSAD S, ATTWELL S, GRAY V et al: Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J. Biol. Chem. (2001) 276:27462–27469.
  • FENG J, PARK J, CRON P, HESS D, HEMMINGS BA: Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. (2004) 279:41189–41196.
  • INOKI K, LI Y, ZHU T, WU J, GUAN KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell. Biol. (2002) 4:648–657.
  • POTTER CJ, PEDRAZA LG, XU T: Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell. Biol. (2002) 4:658–665.
  • MANNING BD, TEE AR, LOGSDON MN, BLENIS J, CANTLEY LC: Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. (2002) 10:151–162.
  • TEE AR, MANNING BD, ROUX PP, CANTLEY LC, BLENIS J: Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. (2003) 13:1259–1268.
  • ZHANG Y, GAO X, SAUCEDO LJ, RUB, EDGAR BA, PAN D: Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell. Biol. (2003) 5:578–581.
  • SAUCEDO LJ, GAO X, CHIARELLI DA, LI L, PAN D, EDGAR BA: Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell. Biol. (2003) 5:566–571.
  • STOCKER H, RADIMERSKI T, SCHINDELHOLZ B et al: Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell. Biol. (2003) 5:559–565.
  • INOKI K, LI Y, XU T, GUAN KL: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. (2003) 17:1829–1834.
  • BRUNN GJ, HUDSON CC, SEKULIC A et al: Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science (1997) 277:99–101.
  • BURNETT PE, BARROW RK, COHEN NA, SNYDER SH, SABATINI DM: RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Nati Acad. Li. USA (1998) 95:1432–1437.
  • SCHALM SS, BLENIS J: Identification of a conserved motif required for mTOR signaling. Curr. Biol. (2002) 12:632–639.
  • HARA K, MARUKI Y, LONG X et al: Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell (2002) 110:177–189.
  • KIM DH, SARBASSOV DD, ALI S M et al.: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell (2002) 110:163–175.
  • SCHALM SS, FINGAR DC, SABATINI DM, BLENIS J: TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. (2003) 13:797–806.
  • NOJIMA H, TOKUNAGA C, EGUCHI S et al: The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif../. Biol. Chem. (2003) 278:15461–15464.
  • KIM DH, SARBASSOV DOS D, ALI SM et al.: GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell. (2003) 11:895–904.
  • MADER S, LEE H, PAUSE A, SONENBERG N: The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Biol. (1995) 15:4990–4997.
  • PAUSE A, BELSHAM GJ, GINGRAS AC et al: Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature (1994) 371:762–767.
  • ••Paper identifying 4EBP1 and showing it disassociates from eIF4E in an insulin-dependent manner.
  • ROSENWALD IB, KASPAR R, ROUSSEAU D et al: Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. ./. Biol. Chem. (1995) 270:21176–21180.
  • HASHEMOLHOSSEINI S, NAGAMINE Y, MORLEY SJ, DESRIVIERES S, MERCEP L, FERRARI S: Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. Biol Chem. (1998) 273:14424–14429.
  • SHANTZ LM, PEGG AE: Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. (1994) 54:2313–2316.
  • ZHONG H, CHILES K, FELDSER D et al.: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. (2000) 60:1541–1545.
  • JEFFERIES HB, FUMAGALLI S, DENNIS PB, REINHARD C, PEARSON RB, THOMAS G: Rapamycin suppresses STOP mRNA translation through inhibition of p70s6k. EMBO J. (1997) 16:3693–704.
  • TERADA N, PATEL HR, TAKASE K, KOHNO K, NAIRN AC, GELFAND EW: Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc. Natl. Acad. Sci. USA (1994) 91:11477–11481.
  • JEFFERIES HB, REINHARD C, KOZMA SC, THOMAS G: Rapamycin selectively represses translation of the Polypyrimidine tract' mRNA family. Proc Natl. Acad. Sci. USA (1994) 91:4441–4445.
  • GINGRAS AC, RAUGHT B, SONENBERG N: mTOR signaling to translation. Curl: Top. Microbial. Immunol (2004) 279:169–197.
  • TANG H, HORNSTEIN E, STOLOVICH M et al: Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of 56K1 and rpS6 phosphorylation. Mol. Cell. Biol. (2001) 21:8671–8683.
  • PENDE M, UM SH, MIEULET V et al.:S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell. Biol. (2004) 24:3112–3124.
  • RAUGHT B, PEIRETTI F, GINGRAS AC et al.: Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. (2004) 23:1761–1769.
  • BROWNE GJ, PROUD CG: A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell. Biol. (2004) 24:2986–2997.
  • NOURSE J, FIRPO E, FLANAGAN WM et al.: Interleukin-2-mediated elimination of the p27Kipl cyclin-dependent kinase inhibitor prevented by rapamycin. Nature (1994) 372:570–573.
  • BARATA JT, CARD OSO AA, NADLER LM, BOUSSIOTIS VA: Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood (2001) 98:1524–1531.
  • JIANG H, COLEMAN J, MISKIMINS R, MISKIMINS WK: Expression of constitutively active 4EBP-1 enhances p27Kipl expression and inhibits proliferation of MCF7 breast cancer cells. Cancer Cell Int. (2003) 3:2.
  • WOLTMAN AM, VAN DER KOOIJ SW COFFER PJ, OFFRINGA R, DAHA MR, VAN KOOTEN C: Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood (2003) 101:1439–1445.
  • DENNIS PB, JAESCHKE A, SAITOH M, FOWLER B, KOZMA SC, THOMAS G: Mammalian TOR: a homeostatic ATP sensor. Science (2001) 294:1102–1105.
  • INOKI K, ZHU T, GUAN KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell (2003) 115:577–590.
  • ••Demonstrated that the TSC complex isregulated by AMPK linking AMP levels to mTOR activity.
  • GAO X, ZHANG Y, ARRAZOLA P et al: Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell. Biol. (2002) 4:699–704.
  • METCALF CE: Structure-based desing of AP23573, a phosphorous-containing analog of rapamycin for anti-tumor therapy. In: American Association for Cancer Research. Orlando, Florida (2004).
  • DUMONT FJ, STARUCH MJ, KOPRAK SL, MELINO MR, SIGAL NH: Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. Iminunol. (1990) 144:251–258.
  • KUO CJ, CHUNG J, FIORENTINO DF, FLANAGAN WM, BLENIS J, CRABTREE GR: Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature (1992) 358:70–73.
  • HACKSTEIN H, TANER T, ZAHORCHAK AF et al.: Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood (2003) 101:4457–4463.
  • CHIANG PH, WANG L, BONHAM CA et al.: Mechanistic insights into impaired dendritic cell function by rapamycin: inhibition of Jak2/Stat4 signaling pathway. Iminunol. (2004) 172:1355–1363.
  • MONTI P, MERCALLI A, LEONE BE, VALERIO DC, ALLAVENA P, PIEMONTI L: Rapamycin impairs antigen uptake of human dendritic cells. Transplantation (2003) 75:137–145.
  • ABE M, THOMSON AW: Influence of immunosuppressive drugs on dendritic cells. Transpl. Inununol. (2003) 11:357–365.
  • HONG JC, KAHAN BD: Sirolimus rescuetherapy for refractory rejection in renal transplantation. Transplantation (2001) 71:1579–1584.
  • EISEN H, ROSS H: Optimizing the immunosuppressive regimen in heart transplantation. J. Heart Lung Transplant. (2004) 23:S207–S213.
  • •A good review of the current status and problems associated with immunosuppressive drugs in heart transplants.
  • DAVIDSON J, WILKINSON A, DANTAL J et al.: New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation (2003) 75:SS3-SS24.
  • OBERBAUER R, KREIS H, JOHNSON RW et al: Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the Rapamune Maintenance Regimen Study. Transplantation (2003) 76:364–370.
  • LO A, EGIDI ME GABER LW et al: Comparison of sirolimus-based calcineurin inhibitor-sparing and calcineurin inhibitor-free regimens in cadaveric renal transplantation. Transplantation (2004) 77:1228–1235.
  • SHAFFER D, LANGONE A, NYLANDER WA, GORAL S, KIZILISIK AT, HELDERMAN JH: A pilot protocol of a calcineurin-inhibitor free regimen for kidney transplant recipients of marginal donor kidneys or with delayed graft function. Clin. Transplant. (2003) 17\(Suppl. 9):31–34.
  • KEOGH A, RICHARDSON M, RUYGROK P et al.: Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years. A randomized clinical trial. Circulation (2004) 110(17):2694–700.
  • CASAS-MELLEY AT, FALKENSTEIN KP,FLYNN LM, ZIEGLER VL, DUNN SP: Improvement in renal function and rejection control in pediatric liver transplant recipients with the introduction of sirolimus. Pediatr: Transplant (2004) 8:362–366.
  • ZHENG XX, SANCHEZ-FUEYO A, SHO M, DOMENIG C, SAYEGH MH, STROM TB: Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. InununiO, (2003) 19:503–514.
  • ••Excellent paper that illustrates the newapproaches being investigated to establish Immunological tolerance.
  • SANCHEZ-FUEYO A, WEBER M, DOMENIG C, STROM TB, ZHENG XX: Tracking the immunoregulatory mechanisms active during allograft tolerance. J. Inonunol. (2002) 168:2274–2281.
  • KNECHTLE SJ: Combination therapy to prevent kidney transplant rejection. Phase MI Clinical Trial (2004).
  • NATIONAL INSTITUTE OF DIABETES, DIGESTIVE AND KIDNEY DISEASES: Evaluating the use of thymoglobulin, sirolimus, and donor bone marrow with kidney transplantation patients. Phase MI Clinical Trial (2004).
  • BERGER E, WILLIAMS DO, REINERT S, MOST AS: Sustained efficacy of percutaneous transluminal coronary angioplasty. Am. Heart J. (1986) 111:233–236.
  • AUSTIN GE, RATLIFF NB, HOLLMAN J, TABEI S, PHILLIPS DF: Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J. Am. Coll. Cardiol (1985) 6:369–375.
  • JAYARAMAN T, MARKS AR: Rapamycin-FKBP12 blocks proliferation, induces differentiation, and inhibits cdc2 kinase activity in a myogenic cell line. ./. Biol. Chem. (1993) 268:25385–25388.
  • GALLO R, PADUREAN A, JAYARAMAN T et al.: Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation (1999) 99:2164–2170.
  • MORICE MC, SERRUYS PW, SOUSA JE et al.: A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl. J. Med. (2002) 346:1773–1780.
  • MOSES J, LEON MB, POPMA JJ et al: SIRIUS: a US multicenter randomized, double blind study of the Sirolimus eluting stent in de novo native coronary lesions. in Presented at the transcatheter cardiovascular therapeutics conference. Washington DC (2002).
  • TANABE K, SERRUYS PW, GRUBE E et al.: TAXUS III Trial: in-stent restenosis treated with stent-based delivery of paclitaxel incorporated in a slow-release polymer formulation. Circulation (2003) 107:559–564.
  • WOODS TC, MARKS AR: Drug-eluting stents. Ann. Rev Med (2004) 55:169–178.
  • •Reviews the current status of the various compounds being investigated for use with stents.
  • ELHENDY A, VAN DOMBURG RT, VANTRIMPONT P et al: Prediction of mortality in heart transplant recipients by stress technetium-99m tetrofosmin myocardial perfusion imaging. Am. J. Cardiol (2002) 89:964–968.
  • JULIUS BK, ATTENHOFER JOST CH, SUTSCH G et al: Incidence, progression and functional significance of cardiac allograft vasculopathy after heart transplantation. Transplantation (2000) 69:847–853.
  • EISEN HJ, TUZCU EM, DORENT R et al: Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl. Med. (2003) 349:847–858.
  • STECK PA, PERSHOUSE MA, JASSER SA et al.: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. (1997) 15:356–362.
  • RISINGER JI, HAYES AK, BERCHUCK A, BARRETT JC: PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. (1997) 57:4736–4738.
  • NESHAT MS, MELLINGHOFF IK, TRAN C et al.: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA (2001) 98:10314–10319.
  • PODSYPANINA K, LEE RT, POLITIS C et al.: An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc. Natl. Acad. Sci. USA (2001) 98:10320–10325.
  • SHI Y, GERA J, HU L et al: Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. (2002) 62:5027–5034.
  • GERA JF, MELLINGHOFF IK, SHI Y et al.: AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. (2004) 279:2737–2746.
  • CHENG JQ, GODWIN AK, BELLACOSA A et al: AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl. Acad. Sci. USA (1992) 89:9267–9271.
  • JENNE DE, REIMANN H, NEZU J et al: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat. Genet. (1998) 18:38–43.
  • HEMMINKI A, MARKIE D, TOMLINSON I et al: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature (1998) 391:184–187.
  • SHAW RJ, BARDEESY N, MANNING BD et al: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell (2004) 6:91–99.
  • HAYDON MS, GOOGE JD, SORRELLS DS, GHALI GE, LI BD: Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer (2000) 88:2803–2810.
  • SORRELLS DL, MESCHONAT C, BLACK D, LI BD: Pattern of amplification and overexpression of the eukaryotic initiation factor 4E gene in solid tumor. Surg. Res. (1999) 85:37–42.
  • WANG S, LLOYD RV, HUTZLER MJ et al.: Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma. Thyroid (2001) 11:1101–1107.
  • BERKEL HJ, TURBAT-HERRERA EA, SHI R, DE BENEDETTI A: Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomarkers Prey. (2001) 10:663–666.
  • ROSENWALD IB, CHEN JJ, WANG S, SAVAS L, LONDON IM, PULLMAN J: Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene (1999) 18:2507–2517.
  • LI BD, MCDONALD JC, NASSAR R, DE BENEDETTI A: Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression. Ann. Surg. (1998) 227:756-761; discussion 761–763.
  • CREW JP, FUGGLE S, BICKNELL R, CRANSTON DW, DE BENEDETTI A, HARRIS AL: Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br. J. Cancer (2000) 82:161–166.
  • SCOTT PA, SMITH K, POULSOM R, DE BENEDETTI A, BICKNELL R, HARRIS AL: Differential expression of vascular endothelial growth factor mRNA versus protein isoform expression in human breast cancer and relationship to eIF-4E. Br. J. Cancer (1998) 77:2120–2128.
  • FINGAR DC, RICHARDSON CJ, TEE AR, CHEATHAM L, TSOU C, BLENIS J: mTOR controls cell cycle progression through its cell growth effectors 56K1 and 4E-BP1/eultaryotic translation initiation factor 4E. Ma. Cell. Biol. (2004) 24:200–216.
  • DILLING MB, GERMAIN GS, DUDKIN L et al: 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. J. Biol. Chem. (2002) 277:13907–13917.
  • MARTIN ME, PEREZ MI, REDONDO C, ALVAREZ MI, SALINAS M, FANDO JL: 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int. J. Biochent. Cell Biol. (2000) 32:633–642.
  • BAUER C, BRASS N, DIESINGER I, KAYSER K, GRASSER FA, MEESE E: Overexpression of the eukaryotic translation initiation factor 4G (eIF4G-1) in squamous cell lung carcinoma. Int. Cancer (2002) 98:181–185.
  • AVDULOV S, LI S, MICHALEK V et al: Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell (2004) 5:553–563.
  • RUGGERO D, MONTANARO L, MA L et al: The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat. Med. (2004) 10:484–486.
  • SECOMBE J, PIERCE SB, EISENMAN RN: Myc: a weapon of mass destruction. Cell (2004) 117:153–156.
  • DATTA SR, DUDEK H, TAO X et a/.: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell (1997) 91:231–241.
  • ZHA J, HARADA H, YANG E, JOCKEL J, KORSMEYER SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCE-X(0. Cell (1996) 87:619–628.
  • WENDEL HG, DE STANCHINA E, FRIDMAN JS et al: Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature (2004) 428:332–337.
  • HUANG S, LIU LN, HOSOI H, DILLING MB, SHIKATA T, HOUGHTON PJ: p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res. (2001) 61:3373–3381.
  • HUANG S, SHU L, DILLING MB et al: Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mof Cell. (2003) 11:1491–1501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.