81
Views
16
CrossRef citations to date
0
Altmetric
Review

Antineovascular therapy, a novel antiangiogenic approach

, &
Pages 63-76 | Published online: 22 Apr 2005

Bibliography

  • CARMELIET P, DORY, HERBERT JM et al: Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature (1998) 394:485–490.
  • FOLKMAN J: Fundamental concepts of the angiogenic process. Curr. Mol Med. (2003) 3:643–651.
  • CARMELIET P: Angiogenesis in health and disease. Nat. Med. (2003) 9:653–660.
  • RELF M, LEJEUNE S, SCOTT PA et al: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. (1997) 57:963–969.
  • KONERDING MA: Ocular angiogenesis: translating preclinical indications to successful clinical development. Expert Opin. Ther. Targets (2004) 8:255–258.
  • ABEDI H, ZACHARY I: Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. (1997) 272:15442–15451.
  • FERRARA N: VEGF and the quest for tumour angiogenesis factors. Nat. Rev Cancer (2002) 2:795–803.
  • TAKAHASHI T, UENO H, SHIBUYA M: VEGF activates protein kinase C-dependent, but Ras-independent Ral-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene (1999) 18:2221–2230.
  • GERBER HP, MCMURTREY A, KOWALSKI J et al.: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. (1998) 273:30336–30343.
  • BURBRIDGE MF, COGE F, GALIZZI JP et al: The role of the matrix metalloproteinases during in vitro vessel formation. Angiogenesis (2002) 5:215–226.
  • HAJITOU A, SOUNNI NE, DEVY L et al.: Down-regulation of vascular endothelial growth factor by tissue inhibitor of metalloproteinase-2: effect on in vivo mammary tumor growth and angiogenesis. Cancer Res. (2001) 61:3450–3457.
  • SEO DW, LI H, GUEDEZ L et al: TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell (2003) 114:171–180.
  • QI JH, EBRAHEM Q, MOORE N et al: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. (2003) 9:407–415.
  • AHONEN M, POUKKULA M, BAKER AH et al.: Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene (2003) 22:2121–2134.
  • ASAHARA T, MUROHARA T, SULLIVAN A et al.: Isolation of putative progenitor endothelial cells for angiogenesis. Science (1997) 275:964–967.
  • ASAHARA T, MASUDA H, TAKAHASHI T et al.: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. (1999) 85:221–228.
  • TAMURA M, UNNO K, YONEZAWA S et al.: In vivo trafficking of endothelial progenitor cells and their possible involvement in tumor neovascularization. Life Sri. (2004) 75:575–584.
  • HEISSIG B, HATTORI K, DIAS S et al.: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell (2002) 109:625–637.
  • HEISSIG B, WERB Z, RAFII S, HATTORI K: Role of c-kit/Kit ligand signaling in regulating vasculogenesis. Thromb. Haemost. (2003) 90:570–576.
  • CHANTRAIN CF, SHIMAD H, JODELE S et al.: Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. (2004) 64:1675–1686.
  • RAFII S, LYDEN D, BENEZRA R, HATTORI K, HEISSIG B: Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev Cancer (2002) 2:826–835.
  • KIMURA H, WEISZ A, OGURA T et al.: Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. Biol. Chem. (2001) 276:2292–2298.
  • SEMENZA GL: Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer (2003) 3:721–732.
  • FERRARA N, GERBER HP, LECOUTER J: The biology of VEGF and its receptors. Nat. Med. (2003) 9:669–676.
  • PREWETT M, HUBER J, LI Y et al: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. (1999) 59:5209–5218.
  • BREKKEN RA, OVERHOLSER JP, STASTNY VA et al: Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/F1k-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res. (2000) 60:5117–5124.
  • BINETRUY-TOURNAIRE R, DEMANGEL C, MALAVAUD B et al: Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO (2000) 19:1525–1533.
  • ZHANG L, YU D, HICKLIN DJ et al:Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res. (2002) 62:2034–2042.
  • YAMAGUCHI S, IWATA K, SHIBUYA M: Soluble Flt-1 (soluble VEGFR-1), a potent natural antiangiogenic molecule in mammals, is phylogenetically conserved in avians. Biochem. Biophys. Res. Commun. (2002) 291:554–559.
  • MAHASRESHTI PJ, NAVARRO JG, KATARAM M et al.: Adenovirus-mediated soluble FLT-1 gene therapy for ovarian carcinoma. Clin. Cancer Res. (2001) 7:2057–2066.
  • HASUMI Y, MIZUKAMI H, URABE M et al.: Soluble FLT-1 expression suppresses carcinomatous ascites in nude mice bearing ovarian cancer. Cancer Res. (2002) 62:2019–2023.
  • KALLURI R: Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev Cancer (2003) 3:422–433.
  • JOHN A, TUSZYNSKI G: The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Patna. Oncol. Res. (2001) 7:14–23.
  • ZUCKER S, CAO J, CHEN WT: Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene (2000) 19:6642–6650.
  • LAMBERT V, WIELOCKX B, MUNAUT C et al: MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. (2003) 17:2290–2292.
  • RUPP PA, LITTLE CD: Integrins in vascular development. Circ. Res. (2001) 89:566–572.
  • STUPACK DG, CHERESH DA: Get a ligand, get a life: integrins, signaling and cell survival. J. Cell Sci. (2002) 115:3729–3738.
  • RUEGG C, DORMOND O, MARIOTTI A: Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim. Biophys. Acta. (2004) 1654:51–67.
  • BROOKS PC, STROMBLAD S, SANDERS LC et al: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell (1996) 85:683–693.
  • HYNES RO: A reevaluation of integrins asregulators of angiogenesis. Nat. Med. (2002) 8:918–921.
  • GUTHEIL JC, CAMPBELL TN, PIERCE PR et al.: Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin. Cancer Res. (2000) 6:3056–3061.
  • KAWAGUCHI M, HOSOTANI R, OHISHI S et al.: A novel synthetic Arg-Gly-Asp-containing peptide cyclo(-RGDf-V-) is the potent inhibitor of angiogenesis. Biochem. Biophys. Res. Commun. (2001) 288:711–717.
  • KUROHANE K, NAMBA Y, OKU N: Liposomes modified with a synthetic Arg-Gly-Asp mimetic inhibit lung metastasis of B16BL6 melanoma cells. Life Sci. (2000) 68:273–281.
  • KEVIL CG, PAYNE DK, MIRE E, ALEXANDER JS: Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J. Biol. Chem. (1998) 273:15099–15103.
  • BLASCHUK OW, ROWLANDS TM: Cadherins as modulators of angiogenesis and the structural integrity of blood vessels. Cancer Metastasis Rev (2000) 19:1–5.
  • CARMELIET P, LAMPUGNANI MG, MOONS L et al: Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell (1999) 98:147–157.
  • CARMELIET P, COLLEN D: Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann. NY Acad. Sci. (2000) 902:249-262; discussion 262–244.
  • LIAO F, DOODY JF, OVERHOLSER J et al: Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res. (2002) 62:2567–2575.
  • O'REILLY MS, HOLMGREN L, CHEN C, FOLKMAN J: Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. (1996) 2:689–692.
  • •This is the first paper that describes angiostatin as a factor that causes and sustains tumour dormancy.
  • CLAESSON-WELSH L, WELSH M, ITO N et al.: Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc. Nati Acad. Sci. USA (1998) 95:5579–5583.
  • MOSER TL, STACK MS, ASPLIN I et al:Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Li. USA (1999) 96:2811–2816.
  • TUSZYNSKI GP, SHARMA MR, ROTHMAN VL, SHARMA MC: Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Micro vasc. Res. (2002) 64:448–462.
  • O'REILLY MS, BOEHM T, SHING Y et al.: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell (1997) 88:277–285.
  • KIM YM, HWANG S, PYUN BJ et al: Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDRa1k-1. J. Biol. Chem. (2002) 277:27872–27879.
  • IRUELA-ARISPE ML, LUQUE A, LEE N: Thrombospondin modules and angiogenesis. Int. Biochem. Cell Biol. (2004) 36:1070–1078.
  • RODRIGUEZ-MANZANEQUE JC, LANE TF, ORTEGA MA et al: Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Nati Acad. Sci. USA (2001) 98:12485–12490.
  • JIMENEZ B, VOLPERT OV, CRAWFORD SE et al.: Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med. (2000) 6:41–48.
  • MIAO WM, SENG WL, DUQUETTE M et al: Thrombospondin-1 Type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and - independent mechanisms. Cancer Res. (2001) 61:7830–7839.
  • SHAHEEN RM, DAVIS DW, LIU W et al.: Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res. (1999) 59:5412–5416.
  • MENDEL DB, LAIRD AD, SMOLICH BD et al.: Development of 5U5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des. (2000) 15:29–41.
  • FONG TA, SHAWVER LK, SUN L et al.:5U5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. (1999) 59:99–106.
  • BERGERS G, BENJAMIN LE: Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer (2003) 3:401–410.
  • HIRATA A, UEHARA H, IZUMI K et al: Direct inhibition of EGF receptor activation in vascular endothelial cells by gefitinib ('Iressi, ZD1839). Cancer Sci (2004) 95:614–618.
  • HIRATA A, OGAWA S, KOMETANI T et al: ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res. (2002) 62:2554–2560.
  • IZUMI Y, XU L, DI TOMASO E, FUKUMURA D, JAIN RK: Tumour biology: herceptin acts as an antiangiogenic cocktail. Nature (2002) 416:279–280.
  • MORI S, UEDA T, KURATSU S et al: Suppression of pulmonary metastasis by angiogenesis inhibitor TNP-470 in murine osteosarcoma. Int. J. Cancer (1995) 61:148–152.
  • ISOBE N, UOZUMI T, KURISU K, KAWAMOTO K: Antitumor effect of TNP-470 on glial tumors transplanted in rats. Anticancer Res. (1996) 16:71–76.
  • LIU S, WIDOM J, KEMP CW, CREWS CM, CLARDY J: Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science (1998) 282:1324–1327.
  • WANG J, LOU P, HENKIN J: Selective inhibition of endothelial cell proliferation by fumagillin is not due to differential expression of methionine aminopeptidases. I Cell Biochem. (2000) 77:465–473.
  • MARCHIO S, LAHDENRANTA J, SCHLINGEMANN RO et al: Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell. (2004) 5:151–162.
  • DANIEL TO, LIU H, MORROW JD, CREWS BC, MARNETT LJ: Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res. (1999) 59:4574–4577.
  • TSUJII M, KAWANO S, TSUJI S et at.: Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell (1998) 93:705–716.
  • KIRKPATRICK K, OGUNKOLADE W, ELKAK A et al: The mRNA expression of cyclo-oxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) in human breast cancer. Curr. Med. Res. Opin. (2002) 18:237–241.
  • LIU XH, KIRSCHENBAUM A, LU M et al.: Prostaglandin E2 induces hypoxia-inducible factor-1 alpha stabilization and nuclear localization in a human prostate cancer cell line. ./. Biol. Chem. (2002) 277:50081–50086.
  • MASFERRER JL, KOKI A, SEIBERT K: COX-2 inhibitors. A new class of antiangiogenic agents. Ann. NY Acad. Sci. (1999) 889:84–86.
  • FINE HA, FIGG WD, JAECKLE K et al: Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. Clin. Oncol (2000) 18:708–715.
  • NG SS, GUTSCHOW M, WEISS M et al.: Antiangiogenic activity of N-substituted and tetrafluorinated thalidomide analogues. Cancer Res. (2003) 63:3189–3194.
  • ALLEN TM, CULLIS PR: Drug delivery systems: entering the mainstream. Science (2004) 303:1818–1822.
  • OKU N: Anticancer therapy using glucuronate modified long-circulating liposomes. Adv. Drug Deify. Rev. (1999) 40:63–73.
  • OKU N, TOKUDOME Y, ASAI T, TSUKADA H: Evaluation of drug targeting strategies and liposomal trafficking. Corr. Pharm. Des. (2000) 6:1669–1691.
  • SHIMIZU K, TAKADA M, ASAI T et al: Cancer chemotherapy by liposomal 6-[12-(dimethylamino)ethyl]amino1-3-hydroxy-7H-indeno12,1-clquinolin-7-one dihydrochloride (TAS-103), a novel anti-cancer agent. Biol. Pharm. (2002) 25:1385–1387.
  • SHIMIZU K, TAKADA M, ASAI T et al: Potential usage of liposomal 4beta-aminoalkyl 4' O demethy1-4-desoxypodophyllotoxin (TOP-53) for cancer chemotherapy. Biol. Pharm. Bull. (2002) 25:783–786.
  • OKU N, ASAI T, WATANABE K et al: Anti-neovascular therapy using novel peptides homing to angiogenic vessels. Oncogene (2002) 21:2662–2669.
  • ••The first paper to propose anti-neovascular therapy, an indirect tumour regression through damaging angiogenic endothelial cells by anticancer agents.
  • ASAI T, NAGATSUKA M, KUROMI K et al.: Suppression of tumor growth by novel peptides homing to tumor-derived new blood vessels. FEBS Lett. (2002) 510:206–210.
  • ZURITA AJ, ARAP W, PASQUALINI R: Mapping tumor vascular diversity by screening phage display libraries. Control. Release (2003) 91:183–186.
  • TREPEL M, ARAP W, PASQUALINI R: In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr. Opin. Chem. Biol. (2002) 6:399–404.
  • •A review for the biopanning of a phage-displayed peptide library to obtain endothelial cell-specific peptides.
  • ASAI T, SHIMIZU K, KONDO M et al:Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett. (2002) 520:167–170.
  • MAEDA N, TAKEUCHI Y, TAKADA M et al:Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome. Control. Release (2004) in press.
  • PASTORINO F, BRIGNOLE C, MARIMPIETRI D et al.: Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res. (2003) 63:7400–7409.
  • SCHIFFELERS RM, KONING GA, TEN HAGEN TL et al.: Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control. Release (2003) 91:115–122.
  • OKU N, ASAI T, WATANABE K et al:Anti-neovascular therapy by use of liposomes targeted to angiogenic vessels. Liposome Res. (2003) 13:25–27.
  • KONDO M, ASAI T, KATANASAKA Y et al: Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int. J. Cancer (2004) 108:301–306.
  • BROWDER T, BUTTERFIELD CE, KRALING BM et al: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. (2000) 60:1878–1886.
  • KERBEL RS, KLEMENT G, PRITCHARD KI, KAMEN B: Continuous low-dose anti-angiogenic/metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann. Oncol (2002) 13:12–15.
  • MANS, BOCCI G, FRANCIA G etal.: Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res. (2002) 62:2731–2735.
  • DOUGHERTY TJ, GOMER CJ, HENDERSON BW etal.: Photodynamic therapy. I Natl Cancer Inst. (1998) 90:889–905.
  • CIULLA TA, DANIS RP, CRISWELL M,PRATT LM: Changing therapeutic paradigms for exudative age-related macular degeneration: antiangiogenic agents and photodynamic therapy. Expert Opin. Investig. Drugs (1999) 8:2173–2182.
  • KUROHANE K, TOMINAGA A, SATO K et al: Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett. (2001) 167:49–56.
  • ICHIKAWA K, TAKEUCHI Y, YONEZAWA S etal.: Antiangiogenic photodynamic therapy (PDT) using Visudyne causes effective suppression of tumor growth. Cancer Lett. (2004) 205:39–48.
  • RAN S, DOWNES A, THORPE PE: Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. (2002) 62:6132–6140.
  • TAKEUCHI Y, KUROHANE K, ICHIKAWA K et al: Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum. Bioconjug. Chem. (2003) 14:790–796.
  • TAKEUCHI Y, ICHIKAWA K, YONEZAWA S et al: Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J. Control. Release (2004) 97:231–240.
  • TAKEUCHI Y, KUROHANE K, ICHIKAWA K et al: Induction of intensive tumor suppression by antiangiogenic photodynamic therapy using polycation-modified liposomal photosensitizer. Cancer (2003) 97:2027–2034.
  • DUDEK AZ, PAWLAK WZ, KIRSTEIN MN: Molecular targets in the inhibition of angiogenesis. Expert Opin. Ther. Targets (2003) 7:527–541.
  • FOLKMAN J: Tumor angiogenesis: therapeutic implications. N Engl. J. Med. (1971) 285:1182–1186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.