63
Views
25
CrossRef citations to date
0
Altmetric
Review

The phosphoinositide 3-kinase signalling pathway as a therapeutic target in squamous cell carcinoma of the head and neck

, , , , &
Pages 769-790 | Published online: 05 Aug 2005

Bibliography

  • JEMAL A, THOMAS A, MURRAY T, THUN M: Cancer statistics, 2002. CA Cancer]. Clin. (2002) 52(1):23–47.
  • IOKA A. TSUKUMA H, AJIKI W, OSHIMA A: Trends in head and neck cancer incidence in Japan during 1965-1999. fp/if. Clin. Oncol (2005) 35(1):45–47.
  • PARKIN DM, BRAY F, FERLAY J, PISANI P: Global cancer statistics, 2002. CA Cancer]. Clin. (2005) 55(2):74–108.
  • MYERS JN, ELKINS T, ROBERTS D, BYERS RM: Squamous cell carcinoma of the tongue in young adults: increasing incidence and factors that predict treatment outcomes. Otolaryngol. Head Neck Surg (2000) 122(1):44–51.
  • ALMADORI G, BUSSU F, CADONI G et al.: Multistep laryngeal carcinogenesis helps our understanding of the field cancerisation phenomenon: a review. Eur. J. Cancer (2004) 40(16):2383–2388.
  • MAO L, HONG WK, PAPADIMITRAKOPOULOU VA: Focus on head and neck cancer. Cancer Cell (2004) 5(4):311–316.
  • SYRJANEN S: Human papillomavirus (HPV) in head and neck cancer. Clin. ViroL (2005) 32(Suppl.):59–66.
  • MAO L, HONG WK: How does human papillomavirus contribute to head and neck cancer development? J. Natl Cancer Inst. (2004) 96(13):978–980.
  • DOBROSSY L: Epidemiology of head and neck cancer: magnitude of the problem. Cancer Metastasis Rev. (2005) 24(1):9–17.
  • SEIWERT TY, COHEN EE: State-of-the-art management of locally advanced head and neck cancer. Br. J. Cancer (2005) 92(8):1341–1348.
  • •Recent review of current therapy of SCCHN.
  • GUERRERO URBANO MT, NUTTING CM: Clinical use of intensity- modulated radiotherapy: part I. Br. J. Radiol. (2004) 77(914):88–96.
  • SAARILAHTI K, KOURI M, COLLAN J et al.: Intensity modulated radiotherapy for head and neck cancer: evidence for preserved salivary gland function. Radiother. Oncol (2005) 74(3):251–258.
  • BERNIER J, COOPER JS: Chemoradiation after surgery for high-risk head and neck cancer patients: how strong is the evidence? Oncologist (2005) 10(3):215–224.
  • HUGUENIN P, BEER KT, ALLAL A et al.: Concomitant cisplatin significantly improves locoregional control in advanced head and neck cancers treated with hyperfractionated radiotherapy./ Clin. Oncol (2004) 22(23):4665–4673.
  • ZENDER CA, PETRUZZELLI GJ: Why do patients with head and neck squamous cell carcinoma experience distant metastases: can they be prevented? Curr. Opin Otolaryngol Head Neck Surg. (2005) 13(2):101–104.
  • SPIEGEL JH, JALISI S: Contemporary diagnosis and management of head and neck cancer. Otolaryngol Clin. North Am. (2005) 38(1):xiii-xiv.
  • •See 10.
  • VOGELSTEIN B, KINZLER KW: Cancer genes and the pathways they control. Nat. Med. (2004) 10(8):789–799.
  • CURNOCK AP, SOTSIOS Y, WARD SG: Assessing the role of multiple phosphoinositide 3-kinases in chemokine signaling: use of dominant negative mutants controlled by a tetracycline-regulated gene expression system. Methods Mol. Biol. (2004) 239:211–222.
  • •Demonstration of role of P13-K in chemokine signalling.
  • SOTSIOS Y, WARD SG: Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunol Rev. (2000) 177:217–235.
  • HANNIGAN G, TROUSSARD AA, DEDHAR S: Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat. Rev. Cancer (2005) 5(1):51–63.
  • MITRA SK, HANSON DA, SCHLAEPFER DD: Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol Cell Biol. (2005) 6(1):56–68.
  • SAWYER C, STURGE J, BENNETT DC et al.: Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res. (2003) 63(7):1667–1675.
  • VIVANCO I, SAWYERS CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer (2002) 2(7):489–501.
  • ••Important review illustrating importanceof P13-K pathway in cancer.
  • CANTLEY LC: The phosphoinositide 3-kinase pathway. Science (2002) 296(5573):1655–1657.
  • •Good overview of P13-K signalling.
  • IBRAHIM SO, VASSTRAND EN, LIAVAAG PG, JOHANNESSEN AC, LILLEHAUG JR: Expression of c-erbB proto-oncogene family members in squamous cell carcinoma of the head and neck. Anti-Cancer Res. (1997) 17(6D):4539–4546.
  • RODRIGO JP, RAMOS S, LAZO PS, ALVAREZ I, SUAREZ C: Amplification of ERBB oncogenes in squamous cell carcinomas of the head and neck. Eur. J. Cancer (1996) 32A(1 0:2004–2010.
  • ROGERS SJ, HARRINGTON KJ, RHYS-EVANS P, P OC, ECCLES SA: Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer Metastasis Rev. (2005) 24(1):47–69.
  • SHIN DM, RO JY HONG WK, HITTELMAN WN: Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. (1994) 54(12):3153–3159.
  • AKERVALL J, GUO X, QIAN CN et al.: Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin. Cancer Res. (2004) 10(24):8204–8213.
  • GALEAZZI E, OLIVERO M, GERVASIO FC et al.: Detection of MET oncogene/hepatocyte growth factor receptor in lymph node metastases from head and neck squamous cell carcinomas. Eur. Arch. Otorhinolaryngol (1997) 254\(Suppl. 0:5138–143.
  • CORTESINA G, MARTONE T, GALEAZZI E et al.: Staging of head and neck squamous cell carcinoma using the MET oncogene product as marker of tumor cells in lymph node metastases. Int. J. Cancer (2000) 89(3):286–292.
  • •Clinical correlation between the Met oncogene, an upstream regulator of P13-K and SCCHN disease stage.
  • DERMAN MP, CHEN JY SPOKES KC, SONGYANG Z, CANTLEY LG: An 11-amino acid sequence from c-met initiates epithelial chemotaxis via phosphatidylinositol 3-kinase and phospholipase C. J. Biol. Chem. (1996) 271(04251–4255.
  • SOLTOFF SP, CARRAWAY KL, 3RD, PRIGENT SA, GULLICK WG, CANTLEY LC: ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. MoL Cell. Biol (1994) 14(6):3550–3558.
  • KIM HH, SIERKE SL, KOLAND JG: Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product./ Biol. Chem. (1994) 269(40):24747–24755.
  • CANTLEY LC, AUGER KR, CARPENTER C et al.: Oncogenes and signal transduction. Cell (1991) 64(2):281–302.
  • KAMALATI T, JOLIN HE, FRY MJ, CROMPTON MR: Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation. Oncogene (2000) 19(48):5471–5476.
  • LIN HS, BERRY GJ, FEE WE, JR., TERRIS DJ, SUN Z: Identification of tyrosine kinases overexpressed in head and neck cancer. Arch. Otolaryngol Head Neck Surg. (2004) 130(3):311–316.
  • RODRIGUEZ-VICIANA P, WARNE PH, DHAND R et al.: Phosphatidylinosito1-3-OH kinase as a direct target of Ras. Nature (1994) 370(6490):527–532.
  • LESLIE NR, DOWNES CP: PTEN function: how normal cells control it and tumour cells lose it. Biochem. (2004) 382(Pt 1):1–11.
  • VAZQUEZ F, SELLERS WR: The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim. Biophys. Acta (2000) 1470(1):M21–35.
  • GUO W, GIANCOTTI FG: Integrin signalling during tumour progression. Nat. Rev. MoL Cell. Biol. (2004) 5(10):816–826.
  • COMOGLIO PM, BOCCACCIO C, TRUSOLINO L: Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr. Opin. Cell Biol. (2003) 15(5):565–571.
  • •New insights into cross-talk between RTK and integrin signalling pathways.
  • ZHAN M, ZHAO H, HAN ZC: Signalling mechanisms of anoikis. Histol Histopathol (2004) 19(3):973–983.
  • SWAN EA, JASSER SA, HOLSINGER FC et al.: Acquisition of anoikis resistance is a critical step in the progression of oral tongue cancer. Oral OncoL (2003) 39(7):648–655.
  • FRISCH SM, VUORI K, RUOSLAHTI E, CIJAN-HUI PY: Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell Biol. (1996) 134(3):793–799.
  • KHWAJA A, RODRIGUEZ-VICIANA P, WENNSTROM S, WARNE PH, DOWNWARD J: Matrix adhesion and Ras transformation both activate a phosphoinositide 3-0H kinase and protein kinase B/Akt cellular survival pathway. EMBO J. (1997) 16(10):2783–2793.
  • SCHLAEPFER DD, MITRA SK, ILIC D: Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta (2004) 1692(2-3):77–102.
  • LIU H, RADISKY DC, WANG F, BISSELL MJ: Polarity and proliferation are controlled by distinct signaling pathways downstream of P13-kinase in breast epithelial tumor cells. J. Cell Biol. (2004) 164(4):603–612.
  • SIEG DJ, HAUCK CR, ILIC D et al.: FAX integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. (2000) 2(5):249–256.
  • ADELSMAN MA, MCCARTHY JB, SHIMIZU Y: Stimulation of betal-integrin function by epidermal growth factor and heregulin-beta has distinct requirements for erbB2 but a similar dependence on phosphoinositide 3-0H kinase. Mol. Biol. Cell (1999) 10(9):2861–2878.
  • GAMBALETTA D, MARCHETTI A, BENEDETTI Let al.: Cooperative signaling between alpha(6)beta(4) integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J. Biol. Chem. (2000) 275(14):10604–10610.
  • JOY AM, BEAUDRY CE, TRAN NL et aL: Migrating glioma cells activate the P13-K pathway and display decreased susceptibility to apoptosis. J. Cell Sci. (2003) 116(Pt 21):4409–4417.
  • QIAN Y, ZHONG X, FLYNN DC et aL: ILK mediates actin filament rearrangements and cell migration and invasion through P13-K/Akt/Racl signaling. Oncogene (2005)
  • TAN C, CRUET-HENNEQUART S, TROUSSARD A et al.: Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell (2004) 5(1):79–90.
  • YAU CY, WHEELER JJ, SUTTON KL, HEDLEY DW: Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the P13-K! PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res. (2005) 65(4):1497–1504.
  • CURNOCK AP, LOGAN MK, WARD SG: Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology (2002) 105(2):125–136.
  • SOTSIOS Y, WHITTAKER GC, WESTWICK J, WARD SG: The CXC chemokine stromal cell-derived factor activates a Gi-coupled phosphoinositide 3-kinase in T lymphocytes. J. ImmunoL (1999) 163(11):5954–5963.
  • TURNER SJ, DOMIN J, WATERFIELD MD, WARD SG, WESTWICK J: The CC chemokine monocyte chemotactic peptide-1 activates both the class I p85/p110 phosphatidylinositol 3-kinase and the class II P13-K-C2alpha. J. Biol. Chem. (1998) 273(40):25987–25995.
  • ZLOTNIK A: Chemokines in neoplastic progression. Semin. Cancer Biol. (2004) 14(3):181–185.
  • BALKWILL F: Cancer and the chemokine network. Nat. Rev. Cancer (2004) 4(7):540–550.
  • MULLER A, HOMEY B, SOTO H et al.: Involvement of chemokine receptors in breast cancer metastasis. Nature (2001) 410(6824):50–56.
  • WANG J, XI L, GOODING W, GODFREY TE, FERRIS RL: Chemokine receptors 6 and 7 identify a metastatic expression pattern in squamous cell carcinoma of the head and neck. Adv. OtorhinolaryngoL (2005) 62:121–133.
  • ALMOFTI A, UCHIDA D, BEGUM NM et al.: The clinicopathological significance of the expression of CXCR4 protein in oral squamous cell carcinoma. Int. J. OncoL (2004) 25(1):65–71.
  • DELILBASI CB, OKURA M, IIDA S, KOGO M: Investigation of CXCR4 in squamous cell carcinoma of the tongue. Oral Oncol. (2004) 40(2):154–157.
  • SAMARA GJ, LAWRENCE DM, CHIARELLI CJ et al.: CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett. (2004) 214(2):231–241.
  • UCHIDA D, BEGUM NM, TOMIZUKAY et aL: Acquisition of lymph node, but not distant metastatic potentials, by the overexpression of CXCR4 in human oral squamous cell carcinoma. Lab. Invest. (2004) 84(12):1538–1546.
  • LI YM, PAN Y, WEI Yet al.: Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell (2004) 6(5):459–469.
  • STRIETER RM, BELPERIO JA, PHILLIPS RJ, KEANE MP: CXC chemokines in angiogenesis of cancer. Semin. Cancer Biol. (2004) 14(3):195–200.
  • SCHIOPPA T, URANCHIMEG B, SACCANI A et al.: Regulation of the chemokine receptor CXCR4 by hypoxia.J. Exp. Med. (2003) 198(9):1391–1402.
  • PHILLIPS RJ, MESTAS J, GHARAEE-KERMANI M et al.: EGF and hypoxia-induced expression of CXCR4 on non-small cell lung cancer cells is regulated by the P13-kinase/PTEN/AKT/mTOR signaling pathway and activation of HIF- 1 alpha. J. Biol. Chem. (2005)
  • DUNST J, STADLER P, BECKER A et al.: Tumor volume and tumor hypoxia in head and neck cancers. The amount of the hypoxic volume is important. Strahlenther. OnkoL (2003) 179(8):521–526.
  • COHEN NA, LAI SY, ZIOBER AF, ZIOBER BL: Dysregulation of hypoxia inducible factor-lalpha in head and neck squamous cell carcinoma cell lines correlates with invasive potential. Laryngoscope (2004) 114(3):418–423.
  • •Demonstrates that hypoxia/HIFla correlates with poor clinical outcome and invasion in SCCHN.
  • KATSUTA M, MIYASHITA M, MAKINO H et al.: Correlation of hypoxia inducible factor-lalpha with lymphatic metastasis via vascular endothelial growth factor-C in human esophageal cancer. Exp. MoL PathoL (2005) 78(2):123–130.
  • YOKOI K, FIDLER IJ: Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin. Cancer Res. (2004) 10(7):2299–2306.
  • KOUKOURAKIS MI, GIATROMANOLAKI A, SIVRIDIS E et al.: Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int. J. Radiat. OncoL Biol. Phys. (2002) 53(5):1192–1202.
  • VORDERMARK D, BROWN JM: Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther. OnkoL (2003) 179(12):801–811.
  • HARRISON L, BLACKWELL K: Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist (2004) 9\(Suppl. 5):31–40.
  • BRIZEL DM, SIBLEY GS, PROSNITZ LR, SCHER RI,, DEWHIRST MW: Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. OncoL BioL Phys. (1997) 38(2):285–289.
  • OLIVER RJ, WOODWARDS RT, SLOAN P et al.: Prognostic value of facilitative glucose transporter Glut-I in oral squamous cell carcinomas treated by surgical resection; results of EORTC Translational Research Fund studies. Eur. J. Cancer (2004) 40(4):503–507.
  • PROSNITZ RG, YAO B, FARRELL CL, CLOUGH R, BRIZEL DM: Pretreatment anemia is correlated with the reduced effectiveness of radiation and concurrent chemotherapy in advanced head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. (2005) 61(4):1087–1095.
  • ESCHMANN SM, PAULSEN F, REIMOLD M et al.: Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. Nud Med. (2005) 46(2):253–260.
  • MOHAMED KM, LEA, DUONG H et al.: Correlation between VEGF and HIF-lalpha expression in human oral squamous cell carcinoma. Exp. MoL PathoL (2004) 76(2):143–152.
  • BARDOS JI, ASHCROFT M: Hypoxia-inducible factor-I and oncogenic signalling. Bioessays (2004) 26(3):262–269.
  • LI YM, ZHOU BP, DENG J et al.: A hypoxia-independent hypoxia-inducible factor-I activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res. (2005) 65(8):3257–3263.
  • YEO EJ, CHUN YS, PARK JW: New anticancer strategies targeting HIF-1.Biochem. PharmacoL (2004) 68(6):1061–1069.
  • TAN C, DE NORONHA RG, ROECKER AJ et al.: Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res. (2005) 65(2):605–612.
  • BARDOS JI, CHAU NM, ASHCROFT M: Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor I alpha expression. MoL Cell. Biol. (2004) 24(7):2905–2914.
  • FRESNO VARA JA, CASADO E, DE CASTRO J et al.: PI3-K/Akt signalling pathway and cancer. Cancer Treat. Rev. (2004) 30(2):193–204.
  • MAYO LD, DONNER DB: The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem. Sci. (2002) 27(9):462–467.
  • SEGRELLES C, RUIZ S, PEREZ P et al.: Functional roles of Akt signaling in mouse skin tumorigenesis. Oncogene (2002) 21(1):53–64.
  • BJORNSTI MA, HOUGHTON PJ: The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer (2004) 4(5):335–348.
  • HAY N, SONENBERG N: Upstream and downstream of mTOR. Genes Dev. (2004) 18(10:1926–1945.
  • CLEMENS MJ: Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene (2004) 23(18):3180–3188.
  • LI S, TAKASU T, PERLMAN DM et al.: Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J. Biol. Chem. (2003) 278(5):3015–3022.
  • KUMAR R, HUNG MC: Signaling intricacies take center stage in cancer cells. Cancer Res. (2005) 65 (7) :2511–2515.
  • THOMPSON JE, THOMPSON CB: Putting the rap on Akt. j Clin. OncoL (2004) 22(20):4217–4226.
  • SUVA D: Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr. Cancer Drug Targets (2004) 4(4):327–336.
  • ECCLES SA: Parallels in invasion and angiogenesis provide pivotal points for therapeutic intervention. Int. J. Dev. Biol. (2004) 48(5-6):583–598.
  • MUNOZ-CHAPULI R, QUESADA AR, ANGEL MEDINA M: Angiogenesis and signal transduction in endothelial cells. Cell. Mol. Life Sci. (2004) 61(17):2224–2243.
  • WAKABAYASHI M, MIWA H, SHIKAMI M et al.: Autocrine pathway of angiopoietins-Tie2 system in AML cells: association with phosphatidyl-inositol 3 kinase. HematoL j (2004) 5(4)053–360.
  • OZEKI M, WATANABE H, LUO J et aL: Akt and Ca2+ signaling in endothelial cells. MoL Cell. Biochem. (2004) 259(1-2):169–176.
  • BRANTLEY-SIEDERS DM, CAUGHRON J, HICKS D et aL: EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide kinase-mediated Rac I GTPase activation. J. Cell Sci. (2004) 117(Pt 10):2037–2049.
  • KIM HS, SHIN HS, KWAK HJ et al.: Betacellulin induces angiogenesis through activation of mitogen-activated protein kinase and phosphatidylinositol 3'-kinase in endothelial cell. FASEB J. (2003) 17(2):318–320.
  • SU JD, MAYO LD, DONNER DB, DURDEN DL: PTEN and phosphatidylinositol 3'-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment. Cancer Res. (2003) 63(13):3585–3592.
  • BRADER S, ECCLES SA: Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori (2004) 90(1):2–8.
  • SHAYESTEH L, LU Y, KUO WL et ed.: PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. (1999) 21(1):99–102.
  • ••First publication of the importanceof PIK3CA in tumorigenesis.
  • MA YY WEI SJ, LIN YC et al.: PIK3CA as an oncogene in cervical cancer. Oncogene (2000) 19(23):2739–2744.
  • MASSION PP, TAFLAN PM, SHYR Y et al.: Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am. J. Respir. Crit. Care Med. (2004) 170 (10):1088–1094.
  • SAMUELS Y, WANG Z, BARDELLI A et al.: High frequency of mutations of the PIK3CA gene in human cancers. Science (2004) 304(5670):554.
  • •Reports P13-KCA mutation in cancer.
  • CAMPBELL IG, RUSSELL SE, CHOONG DY et al.: Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. (2004) 64(21):7678–7681.
  • BACHMAN KE, ARGANI P, SAMUELS Y et al.: The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther. (2004) 3(8):772–775.
  • LEE JW, SOUNG YH, KIM SY et al.: PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene (2005) 24(8):1477–1480.
  • BRODERICK DK, DI C, PARRETT TJ et al.: Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. (2004) 64(15):5048–5050.
  • KANG S, BADER AG, VOGT PK: Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. NatL Acad. Sci. USA (2005) 102(3):802–807.
  • SUN M, WANG G, PACIGA JE et aL: AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am. J. Pathol. (2001) 159(2):431–437.
  • BELLACOSA A, DE EEO D, GODWIN AK et al.: Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer (1995) 64(4):280–285.
  • MUKOHARA T, KUDOH S, MATSUURA K et al.: Activated Akt expression has significant correlation with EGFR and TGF-alpha expressions in stage I NSCLC. Anti-Cancer Res. (2004) 24(1):11–17.
  • CHAKRAVARTI A. ZHAI G, SUZUKI Yet al.: The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. OncoL (2004) 22(10):1926–1933.
  • DAI DL, MARTINKA M, LI G: Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J. Clin. OncoL (2005) 23(7):1473–1482.
  • •Clinical series showing significant correlation between activated Akt and aggressive disease behaviour and its potential as a prognostic marker.
  • SINGH B, STOFFEL A. GOGINENI S et al.: Amplification of the 3q26.3 locus is associated with progression to invasive cancer and is a negative prognostic factor in head and neck squamous cell carcinomas. Am. J. Pathol. (2002) 161(2):365–371.
  • STICHT C, HOFELE C, FLECHTENMACHER C et al.: Amplification of Cyclin Li is associated with lymph node metastases in head and neck squamous cell carcinoma (HNSCC). Br. J. Cancer (2005) 92(4):770–774.
  • WOENCKHAUS J, STEGER K, WERNER E et al.: Genomic gain of PIK3CA and increased expression of p1 10alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J. Pathol. (2002) 198(3):335–342.
  • •Shows key role of P13-KCA gain in copy number and p110a expression in SCCHN disease progression.
  • ESTILO CL, P OC, NGAI I et al.: The role of novel oncogenes squamous cell carcinoma-related oncogene and phosphatidylinositol 3-kinase p1 10alpha in squamous cell carcinoma of the oral tongue. Clin. Cancer Res. (2003) 9(6):2300–2306.
  • PEDRERO JM, CARRACEDO DG, PINTO CM et al.: Frequent genetic and biochemical alterations of the PI 3-K/AKT/ PTEN pathway in head and neck squamous cell carcinoma. Int. J. Cancer (2005) 114(2):242–248.
  • ••First definitive and comprehensivestudy of the P13-K pathway in SCCHN.
  • TOSI L, RINALDI E, CARINCI F et aL: Akt, protein kinase C, and mitogen-activated protein kinase phosphorylation status in head and neck squamous cell carcinoma. Head Neck (2005) 27(2):130–137.
  • AMORNPHIMOLTHAM P, SRIURANPONG V PATEL Vet aL: Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01.Clin. Cancer Res. (2004) 10(12 Pt 1):4029–4037.
  • WORSHAM MJ, PALS G, SCHOUTEN JP et al.: Delineating genetic pathways of disease progression in head and neck squamous cell carcinoma. Arch. OtolaryngoL Head Neck Surg (2003) 129(7):702–708.
  • KURIBAYASHI A. KATAOKA K, KURABAYASHI T, MIURA M: Evidence that basal activity, but not transactivation, of the epidermal growth factor receptor tyrosine kinase is required for insulin-like growth Factor hinduced activation of extracellular signal-regulated kinase in oral carcinoma cells. Endocrinology (2004) 145(1 0:4976–4984.
  • JONES HE, GODDARD L, GEE JM et al.: Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr. Relat. Cancer (2004) 11(4):793–814.
  • TSURUTANI J, CASTILLO SS, BROGNARD J et aL: Tobacco components stimulate Akt-dependent proliferation and NFIkappa113-dependent survival in lung cancer cells. Carcinogenesis (2005)
  • NATHAN CA, AMIRGHAHARI N, ABREO F et aL: Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin. Cancer Res. (2004) 10(17):5820–5827.
  • KALISH LH, KWONG RA, COLE IE et aL: Deregulated cyclin D1 expression is associated with decreased efficacy of the selective epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in head and neck squamous cell carcinoma cell lines. Clin. Cancer Res. (2004) 10(22):7764–7774.
  • DONG G, CHEN Z, LI ZY et aL: Hepatocyte growth factor/scatter factor-induced activation of MEK and P13-K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. (2001) 61(15):5911–5918.
  • •Angiogenesis is mediated by P13-K in SCCHN.
  • STEWART J, SIAVASH H, HEBERT C et al.: Phenotypic switching of VEGF and collagen XVIII during hypoxia in head and neck squamous carcinoma cells. Oral OncoL (2003) 39(8):862–869.
  • SQUARIZE CH, CASTILHO RM, SANTOS PINTO D, JR.: Immunohistochemical evidence of PTEN in oral squamous cell carcinoma and its correlation with the histological malignancy grading system. J. Oral Pathol. Med. (2002) 31(7):379–384.
  • SUN S, STEINBERG BM: PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells. J. Gen. ViroL (2002) 83(Pt 7):1651–1658.
  • WU R, SUN S, STEINBERG BM: Requirement of STAT3 activation for differentiation of mucosal stratified squamous epithelium. MoL Med. (2003) 9(3-4):77–84.
  • SANSAL I, SELLERS WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. OncoL (2004) 22(14):2954–2963.
  • SHIN KH, KIM JM, RHO KS et aL: Inactivation of the PTEN gene by mutation, exonic deletion, and loss of transcript in human oral squamous cell carcinomas. Int. J. Oncol. (2002) 21(5):997–1001.
  • LEE JI, SORIA JC, HASSAN KA et ell.: Loss of PTEN expression as a prognostic marker for tongue cancer. Arch. OtolaryngoL Head Neck Surg. (2001) 127(12):1441–1445.
  • MAVROS A, HAHN M, WIELAND I et al.: Infrequent genetic alterations of the tumor suppressor gene PTEN/MMAC1 in squamous cell carcinoma of the oral cavity. J. Oral Pathol. Med. (2002) 31(5):270–276.
  • SINGH B, REDDY PG, GOBERDHAN A et al.: p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. (2002) 16(8):984–993.
  • MAYO LD, DIXON JE, DURDEN DL, TONKS NK, DONNER DB: PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J. Biol. Chem. (2002) 277(7):5484–5489.
  • FERRIS RL, MARTINEZ I, SIRIANNI N et al.: Human papillomavirus-16 associated squamous cell carcinoma of the head and neck (SCCHN): a natural disease model provides insights into viral carcinogenesis. Eur. J. Cancer (2005) 41(5):807–815.
  • CLAYMAN GL, EL-NAGGAR AK, LIPPMAN SM et al.: Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma./ Clin. Oncol (1998) 16(6):2221–2232.
  • GHOBRIAL IM, WITZIG TE, ADJEI AA Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. (2005) 55(3):178–194.
  • BASELGA J, ARTEAGA CL: Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. Clin. Oncol (2005) 23(10:2445–2459.
  • ROGERS SJ, HARRINGTON KJ, ECCLES SA, NUTTING CM: Combination epidermal growth factor receptor inhibition and radical radiotherapy for NSCLC. Expert Rev. Anti-Cancer Ther. (2004) 4(4):569–583.
  • COHEN EE: Novel therapeutic targets in squamous cell carcinoma of the head and neck. Semin. Oncol (2004) 31(6):755–768.
  • •Recent review of experience with molecularly targeted agents in SCCHN.
  • PAEZ JG, JANNE PA, LEE JC et al.: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (2004) 304(5676):1497–1500.
  • ••Evidence that EGFR mutations maydetermine sensitivity to gefitinib in NSCLC.
  • ENGELMAN JA, JANNE PA, MERMEL C et al.: ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc. Natl. Acad. Sci. USA (2005) 102(10):3788–3793.
  • YANG SH, MECHANIC LE, YANG P et al.: Mutations in the tyrosine kinase domain of the epidermal growth factor receptor in non-small cell lung cancer. Clin. Cancer Res. (2005) 11(0:2106–2110.
  • KIM KS, JEONG JY, KIM YC et al.: Predictors of the response to gefitinib in refractory non-small cell lung cancer. Clin. Cancer Res. (2005) 11(6):2244–2251.
  • •First report of EGFR TK mutations in SCCHN.
  • LEE JW, SOUNG YH, KIM SY et ell.: Somatic Mutations of EGFR Gene in Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. (2005) 11(8):2879–2882.
  • SORDELLA R, BELL DW, HABER DA, SETTLEMAN J: Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science (2004) 305(5687):1163–1167.
  • •EGFR tyrosine kinase mutations may sensitise cells to gefitinib by causing dependence on P13-K/Akt pathway which leads to significant apoptosis when Akt is inhibited through EGFR blockade.
  • CAPPUZZO F, MAGRINI E, CERESOLI GL et al.: Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J. Nail Cancer Inst. (2004) 96(15):1133–1141.
  • HAN SW, HWANG PG, CHUNG DH et al.: Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int. J. Cancer (2005) 113(1):109–115.
  • SHIEN T, DOIHARA H, HARA H et aL: PLC and P13-K pathways are important in the inhibition of EGF-induced cell migration by gefitinib ('Iressa', ZD1839). Breast Cancer (2004) 11(4):367–373.
  • CIARDIELLO F, CAPUTO R, BIANCO R et al.: Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. (2000) 6(5):2053–2063.
  • SIROTNAK FM, ZAKOWSKI MF, MILLER VA, SCHER HI, KRIS MG: Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res. (2000) 6(12):4885–4892.
  • MAGNE N, FISCHEL JL, DUBREUIL A et al.: Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of ZD1839 ('Iressa'). Br. J. Cancer (2002) 86(9):1518–1523.
  • BAILLEY LK M, WOLF M, KAY A et aL: Tumor EGFR membrane staining is not clinically relevant for prediciting response in patients receiving gefitinib ('IRESSA', ZD1839) monotherapy for pretreated advanced non-small cell lung cancer: IDEAL1 and 2.American Society for Clinical Oncology (2003).
  • ECCLES SA: Targeting key steps in metastatic tumour progression. Curr. Opin. Genet. Dev. (2005) 15(1):77–86.
  • BRIAN PW: The effects of some microbial metabolic products on plant growth. Symp. Soc. Exp. Biol (1957) 54(11):166–182.
  • SCHULTZ RM, MERRIMAN RL, ANDIS SL et al.: In vitro and in vivo antitumor activity of the phosphatidylinosito1-3-kinase inhibitor, wortmannin. Anti-Cancer Res. (1995) 15(4):1135–1139.
  • LEMKE LE, PAINE-MURRIETA GD, TAYLOR CW, POWIS G: Wortmannin inhibits the growth of mammary tumors despite the existence of a novel wortmannin-insensitive phosphatidylinosito1-3-kinase. Cancer Chemother. Pharmacol (1999) 44(6):491–497.
  • YU K, LUCAS J, ZHU T et al.: PWT-458, A Novel Pegylated-17-Hydroxywortmannin, Inhibits Phosphatidylinositol 3-Kinase Signaling and Suppresses Growth of Solid Tumors. Cancer Biol. Ther. (2005) 4(5)
  • •Suggests new wortmannin derivative may be suitable for clinical development.
  • DAVIES SP, REDDY H, CAIVANO M, COHEN P: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. j (2000) 351(Pt 0:95–105.
  • WORKMAN P: Inhibiting the phosphoinositide 3-kinase pathway for cancer treatment. Biochem. Soc. Trans. (2004) 32(Pt 2):393–396.
  • MITSIADES CS, MITSIADES N, KOUTSILIERIS M: The Akt pathway: molecular targets for anti-cancer drug development. Cuff. Cancer Drug Targets (2004) 4(3):235–256.
  • WALKER EH, PERISIC 0, RIED C, STEPHENS L, WILLIAMS RL: Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature (1999) 402(6759):313–320.
  • •Elucidation of the crystal structure of P13-K catalytic domain, with implications for the design of isoform-selective inhibitors.
  • DREES BEM, G.B.; ROMMEL, C.; PRESTWICH, G.D.: Therapeutic potential of phosphoinositide 3-kinase inhibitors. Expert Opin. Ther. Patents (2004) 14(5):703–732.
  • ••Comprehensive review, includingchemistry, of P13-K inhibitors.
  • WETZKER R, ROMMEL C: Phosphoinositide 3-kinases as targets for therapeutic intervention. Curr. Pharm. Des. (2004) 10(16):1915–1922.
  • SADHU C, DICK K, TINO WT, STAUNTON DE: Selective role of P13-K delta in neutrophil inflammatory responses. Biochem. Biophys. Res. Commun. (2003) 308(4):764–769.
  • GENG L, TAN J, HIMMELFARB E et al.: A specific antagonist of the p110delta catalytic component of phosphatidylinositol 3'-kinase, IC486068, enhances radiation-induced tumor vascular destruction. Cancer Res. (2004) 64(104893–4899.
  • KAUFMANN J, PRONK G, GIESE K, KLIPPEL A: Identification of novel effectors of invasive cell growth downstream of phosphoinositide 3-kinase. Biochem. Soc. Trans. (2004) 32(Pt 2):355–359.
  • CZAUDERNA F, FECHTNER M, AYGUN H et al.: Functional studies of the P1(3)-kinase signalling pathway employing synthetic and expressed siRNA. Nucleic Acids Res. (2003) 31(2):670–682.
  • KNIGHT ZA, CHIANG GG, ALAIMO PJ et al: Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg Med. Chem. (2004) 12(17):4749–4759.
  • ALAIMO PJ, KNIGHT ZA, SHOKAT KM: Targeting the gatekeeper residue in phosphoinositide 3-kinases. Bioorg. Med. Chem. (2005) 13(8):2825–2836.
  • XIA W, MULLIN RJ, KEITH BR et ell.: Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFRJerbB2 and downstream Erk1/2 and AKT pathways. Oncogene (2002) 21(41):6255–6263.
  • HELLYER NJ, KIM MS, KOLAND JG: Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor. J. Biol. Chem. (2001) 276(45):42153–42161.
  • CAMP ER, SUMMY J, BAUER TW et al.: Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin. Cancer Res. (2005) 11(1):397–405.
  • OCHAROENRAT P, RHYS-EVANS P, ECCLES S: Characterization of ten newly-derived human head and neck squamous carcinoma cell lines with special reference to c-erbB proto-oncogene expression. Anti-Cancer Res. (2001) 21(3B):1953–1963.
  • YIGITBASI OG, YOUNES MN, DOAN D et al: Tumor cell and endothelial cell therapy of oral cancer by dual tyrosine kinase receptor blockade. Cancer Res. (2004) 64(21):7977–7984.
  • STEELMAN LS, BERTRAND FE, MCCUBREY JA: The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opin. Ther. Targets (2004) 8(0:537–550.
  • SHE QB, SOLIT D, BASSO A. MOASSER MM: Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling. Clin. Cancer Res. (2003) 9(12):4340–4346.
  • •Clear demonstration of advantage to be gained in restoring sensitivity to gefitinib by inhibiting P13-K pathway.
  • FELDMAN RI, WU JM, POLOKOFF MA et al: Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1 (PDK1). j Biol. Chem. (2005)
  • KOMANDER D, KULAR GS, SCHUTTELKOPF AW et al: Interactions of LY333531 and other bisindolyl maleimide inhibitors with PDK1.Structure (Camb) (2004) 12(2):215–226.
  • KIM D, DAN HC, PARK S et al: AKT/ PKB signaling mechanisms in cancer and chemoresistance. Front Biosci. (2005) 10:975–984.
  • BREITENLECHNER C, GASSEL M, ENGH R, BOSSEMEYER D: Structural insights into AGC kinase inhibition. Oncol Res. (2004) 14(6):267–278.
  • HU Y, QIAO L, WANG S et al: 3-(Hydroxymethyp-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block P13-K, Akt, and cancer cell growth./ Med. Chem. (2000) 43(16):3045–3051.
  • RAZZINI G, BERRIE CP, VIGNATI S et al: Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB J. (2000) 14(9):1179–1187.
  • CASTILLO SS, BROGNARD J, PETUKHOV PA et al: Preferential inhibition of Akt and killing of Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues. Cancer Res. (2004) 64(8):2782–2792.
  • MITSIADES CS, MITSIADES N, POULAKI Vet al: Activation of NE-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene (2002) 21(37):5673–5683.
  • MEUILLET EJ, IHLE N, BAKER AF et al: In vivo molecular pharmacology and antitumor activity of the targeted Akt inhibitor PX-316.Oncol. Res. (2004) 14(10):513–527.
  • VAN UMMERSEN L, BINGER K, VOLKMAN J et al: A Phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin. Cancer Res. (2004) 10(22):7450–7456.
  • CRUL M, ROSING H, DE KLERK GJ et al: Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur. j Cancer (2002) 38(12):1615–1621.
  • JINX, GOSSETT DR, WANG S et al: Inhibition of AKT survival pathway by a small molecule inhibitor in human endometrial cancer cells. Br. J. Cancer (2004) 91(10):1808–1812.
  • NESHAT MS, MELLINGHOFF IK, TRAN C et al: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA (2001) 98(18):10314–10319.
  • PODSYPANINA K, LEE RT, POLITIS C et al: An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc. Natl Acad. Sci. USA (2001) 98(18):10320–10325.
  • DUDKIN L, DILLING MB, CHESHIRE PJ et al: Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin. Cancer Res. (2001) 7(6):1758–1764.
  • Cl-JAN S: Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br. J. Cancer (2004) 91(8):1420–1424.
  • EASTON JB, HOUGHTON PJ: Therapeutic potential of target of rapamycin inhibitors. Expert Opin. Ther. Targets (2004) 8(0:551–564.
  • •Recent comprehensive review of mTOR inhibitors.
  • DANCEY JE: Molecular targeting: PI3 kinase pathway. Ann. Oncol (2004) 15\(Suppl. 4):iv233–239.
  • MCCORMICK F: Cancer: survival pathways meet their end. Nature (2004) 428(6980):267–269.
  • SAWYERS CL: Will mTOR inhibitors make it as cancer drugs? Cancer Cell (2003) 4(5):343–348.
  • •Important insights into potential sensitivity of cancer cells to inhibition of survival pathways depending on their 'wiring'.
  • LANGO MN, SHIN DM, GRANDIS JR: Targeting growth factor receptors: integration of novel therapeutics in the management of head and neck cancer. Cuff. Opin. Oncol (2001) 13(3):168–175.
  • HUANG S, ARMSTRONG EA, BENAVENTE S, CHINNAIYAN P, HARARI PM: Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res. (2004) 64(15):5355–5362.
  • FISCHEL JL, FORMENTO P, MILANO G: Epidermal growth factor receptor double targeting by a tyrosine kinase inhibitor (Iressa) and a monoclonal antibody (Cetuximab). Impact on cell growth and molecular factors. Br. J. Cancer (2005) 92(6):1063–1068.
  • CAPONIGRO F, FORMATO R, CARAGLIA M, NORMANNO N, IAFFAIOLI RV: Monoclonal antibodies targeting epidermal growth factor receptor and vascular endothelial growth factor with a focus on head and neck tumors. Cuff. Opin. Oncol (2005) 17(3):212–217.
  • GOUDAR RK, SHI Q, HJELMELAND MD et al.: Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther. (2005) 4(1):101–112.
  • ZHAN M, HAN ZC: Phosphatidylinositide 3-kinase/AKT in radiation responses. Histol Histopathol (2004) 19(3):915–923.
  • LEE JT, JR., STEELMAN LS, MCCUBREY JA: Phosphatidylinositol 3'-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. (2004) 64(22):8397–8404.
  • KNUEFERMANN C, LU Y, LIU B et al.: HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene (2003) 22(21):3205–3212.
  • HU L, HOFMANN J, LU Y, MILLS GB, JAFFE RB: Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res. (2002) 62(4):1087–1092.
  • CLARK AS, WEST K, STREICHER S, DENNIS PA: Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. MoL Cancer Ther. (2002) 1(9):707–717.
  • NGUYEN DM, CHEN GA, REDDY R et al.: Potentiation of paclitaxel cytotoxicity in lung and esophageal cancer cells by pharmacologic inhibition of the phosphoinositide 3-kinase/protein kinase B (Akt)-mediated signaling pathway. J. Thorac. Cardiovasc. Surg. (2004) 127(2):365–375.
  • NG SSW, TSAO MS, CHOW S, HEDLEY DW: Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res. (2000) 60(19):5451–5455.
  • KIM SH, UM JH, DONG-WON B et al.: Potentiation of chemosensitivity in multidrug-resistant human leukemia CEM cells by inhibition of DNA- suppresses tumor growth and synergizes with chemotherapeutics both in vitro and in vivo. Proc. Amer. Assoc Cancer Res. (2005) 46:1701.
  • WENDEL HG, DE STANCHINA E, FRIDMAN JS et al.: Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature (2004) 428(6980):332–337.
  • GRUNWALD V, DEGRAFFENRIED L, RUSSEL D et al.: Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res. (2002) 62(21):6141–6145.
  • WU L, BIRLE DC, TANNOCK IF: Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res. (2005) 65(7):2825–2831.
  • AOKI K, OGAWA T, ITO Y, NAKASHIMA S: Cisplatin activates survival signals in UM-SCC-23 squamous cell carcinoma and these signal pathways are amplified in cisplatin-resistant squamous cell carcinoma. Oncol Rep. (2004) 11(2):375–379.
  • •Report of high levels of activated Akt in SCC cell line resistant to cisplatin and induction of apoptosis when P13-K inhibitor co-administered.
  • LAWRENCE TS, NYATI MK: Small-molecule tyrosine kinase inhibitors as radiosensitizers. Semin. Radiat. Oncol (2002) 12(3 Suppl. 2):33–36.
  • KRAUSE M, SCHUTZE C, PETERSEN C et al.: Different classes of EGFR inhibitors may have different potential to improve local tumour control after fractionated irradiation: a study on C225 in FaDu hSCC. Radiother. Oncol (2005) 74(2):109–115.
  • GUPTA AK, MCKENNA WG, WEBER CN et al.: Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin. Cancer Res. (2002) 8(3):885–892.Demonstration of clinical correlation between SCCHN recurrence following radiotherapy and level of Akt expression.
  • AKIMOTO T, NONAKA T, HARASHIMA K et al.: Selective inhibition of survival signal transduction pathways enhanced radiosensitivity in human esophageal cancer cell lines in vitro. Anti-Cancer Res. (2004) 24(2B):811–819.
  • SARKARIA JN, TIBBETTS RS, BUSBY EC et al.: Inhibition of phosphoinositide 3-kinase related kinases dependent protein kinase using wortmannin. Leuk. Res. (2000) 24(11):917–925.wortmannin. Leuk. Res. (2000) 24(11):917–925.sodium butyrate-induced apoptosis by phosphatidylinositol 3'-kinase inhibition in the KM20 human colon cancer cell line. Clin. Cancer Res. (2002) 8(0:1940-1947.by the radiosensitizing agent wortmannin. Cancer Res. (1998) 58(19):4375–4382.
  • ROSENZWEIG KE, YOUMELL MB, PALAYOOR ST, PRICE BD: Radiosensitization of human tumor cells by the phosphatidylinosito13-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin. Cancer Res. (1997) 3(7):1149–1156.
  • FAN QW, SPECHT KM, ZHANG C et al.: Combinatorial efficacy achieved through two-point blockade within a signaling pathway-a chemical genetic approach. Cancer Res. (2003) 63(24):8930–8938.
  • STEPHAN S, DATTA K, WANG E et al.: Effect of rapamycin alone and in combination with antiangiogenesis therapy in an orthotopic model of human pancreatic cancer. Clin. Cancer Res. (2004) 10(20):6993–7000.
  • COHEN EE, ROSEN F, STADLER WM et al.: Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol. (2003) 21(10):1980–1987.
  • AKERVALL J: Gene profiling in squamous cell carcinoma of the head and neck. Cancer Metastasis Rev. (2005) 24(1):87–94.
  • POWIS G, BONJOUKLIAN R, BERGGREN MM et al.: Wortmannin, a potent and selective inhibitor of phosphatidylinosito1-3-kinase. Cancer Res. (1994) 54(9):2419–2423.
  • VLAHOS CJ, MATTER WF, HUI KY BROWN RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholiny1)-8-pheny1-4H-1-benzopyran-4-one (LY294002). j Biol. Chem. (1994) 269(7):5241–5248.
  • SHEPHERD FP, CIULEANU T et al.: A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lng cancer following failure of 1st or 2nd line chemotherapy. A National Cancer Institute of Canada Clincial Trials Group Trial (NCIC CTG). Proceedings from the 40th annual meeting of the American Society of Clinical Oncoogy. 2004.
  • BASELGA J, PFISTER D, COOPER MR et al.: Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol (2000) 18(4):904–914.
  • ROBERT F, EZEKIEL MP, SPENCER SA et al.: Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol (2001) 19(13):3234–3243.
  • BURRIS HA, 3RD: Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist (2004) 9\(Suppl. 3):10–15.
  • CALVO E, TOLCHER AW, HAMMOND LA et al.: Administration of CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, is feasible on a 7-day on, 7-day off schedule: a Phase I pharmacokinetic and food effect study. Clin. Cancer Res. (2004) 10(20:7112–7120.
  • DEWJI MR: Early Phase I data on an irreversible pan-erb inhibitor: CI-1033.What did we learn? J. Chemother. (2004) 16\(Suppl. 4):44–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.