212
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Targeted drug delivery for treatment and imaging of glioblastoma multiforme

&
Pages 705-718 | Published online: 19 Jun 2009

Bibliography

  • ACS. American Cancer Society, Cancer Facts and Figures. [Internet] Available from: http://www.cancer.org/docroot/STT/stt_0_2006.asp?sitearea=STT&level=1[cited 2006]
  • Hou L, Veeravagu A, Hsu A, et al. Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg. Focus,2006;4(E3):1-13
  • NCI. National Cancer Institute, Fast Stats: Prevalence of Cancer. [Internet] Available from: http://seer.cancer.gov/faststats/sites.php?site=Brain + and + Other + Nervous + System + Cancer&stat=Prevalence[cited 2003]
  • Rainov N, Soling A, Heidecke V. Novel therapies for malignant gliomas: a local affair? Neurosurg Focus 2006;4(E9):1-13
  • Laws ER Jr, Goldberg WJ, Bernstein JJ. Migration of human malignant astrocytoma cells in the mammalian brain: Scherer revisited. Int J Dev Neurosci 1993;11(5):691-7
  • Silbergeld DL, Chicoine MR. Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 1997;86(3):525-31
  • Jelsma RK, Bucy PC. The treatment of glioblastoma multiforme. Trans Am Neurol Assoc 1967;92:90-3
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987-96
  • Dandy WE. Removal of right cerebral hemisphere for certain tumors with hemiplegia: a preliminary report. J Am Med Assoc 1928;90:823-25
  • Gardner WJ. Removal of the right hemisphere for infiltrating glioma. Arch Neurol Psychiat Chic 1932;28:470
  • Bell E, Karnosh LJ. Cerebral hemispherectomy: report of a case ten years after operation. J Neurosurg 1949;6:285-93
  • Matsukado Y, Maccarty CS, Kernohan JW. The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. J Neurosurg 1961;18:636-44
  • Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 1989;37(1):77-104
  • Bradbury M. Concept of a Blood-Brain Barrier. Chichester: Wiley; 1979
  • Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003;3(2):90-105, 51
  • Walker WL, Cook J. Drug delivery to brain tumors. Bull Math Biol 1996;58(6):1047-74
  • Wang CC, Li J, Teo CS, et al. The delivery of BCNU to brain tumors. J Control Release 1999;61(1-2):21-41
  • Blasberg RG, Patlak C, Fenstermacher JD. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 1975;195(1):73-83
  • Baba T, Chio CC, Black KL. The effect of 5-lipoxygenase inhibition on blood-brain barrier permeability in experimental brain tumors. J Neurosurg 1992;77(3):403-6
  • Chio CC, Baba T, Black KL. Selective blood-tumor barrier disruption by leukotrienes. J Neurosurg 1992;77(3):407-10
  • Burton E, Prados M. New chemotherapy options for the treatment of malignant gliomas. Curr Opin Oncol 1999;11(3):157-61
  • Deeken JF, Loscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007;13(6):1663-74
  • Muldoon LL, Soussain C, Jahnke K, et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007;25(16):2295-305
  • Patel MM, Goyal BR, Bhadada SV, et al. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009;23(1):35-58
  • Salgaller ML, Liau LM. Current status of clinical trials for glioblastoma. Rev Recent Clin Trials 2006;1(3):265-81
  • Silva GA. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 2008;9(Suppl 3):S4
  • Ningaraj NS. Drug delivery to brain tumours: challenges and progress. Expert Opin Drug Deliv 2006;3(4):499-509
  • Pardridge WM, Boado RJ, Black KL, et al, Blood-brain barrier and new approaches to brain drug delivery. West J Med 1992;156(3):281-6
  • Black KL. Therapeutic Delivery to Brain Tumors. Available from: https://www.csmc.edu/pdf/KeithBlackDrugDelivery.pdf [cited] 2008
  • Inamura T, Black KL. Bradykinin selectively opens blood-tumor barrier in experimental brain tumors. J Cereb Blood Flow Metab 1994;14(5):862-70
  • Inamura T, Nomura T, Bartus RT, et al. Intracarotid infusion of RMP-7, a bradykinin analog: a method for selective drug delivery to brain tumors. J Neurosurg 1994;81(5):752-8
  • Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem 2008;106(4):1534-44
  • Demeule M, Regina A, Che C, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2008;324(3):1064-72
  • Regina A, Demeule M, Che C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 2008;155(2):185-97
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008;60(15):1615-26
  • Wang MD, Shin DM, Simons JW, et al. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 2007;7(6):833-7
  • van Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 2006;3(2):205-16
  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-6
  • Bernardi RJ, Lowery AR, Thompson PA, et al. Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 2008;86(2):165-72
  • Maeda H, Fang J, Inutsuka T, et al. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 2003;3(3):319-28
  • Yang L, Mao H, Wang YA, et al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 2009;5(2):235-43
  • Smith AM, Duan H, Mohs AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 2008;60(11):1226-40
  • Lowery AR, Gobin AM, Day ES, et al. Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomedicine 2006;1(2):149-54
  • Berens ME, Giese A. “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1999;1(3):208-19
  • Berens ME, Rief MD, Loo MA, et al. The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay. Clin Exp Metastasis 1994;12(6):405-15
  • Berens ME, Rief MD, Shapiro JR, et al. Proliferation and motility responses of primary and recurrent gliomas related to changes in epidermal growth factor receptor expression. J Neurooncol 1996;27(1):11-22
  • Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release 2001;74(1-3):63-7
  • Fung LK, Shin M, Tyler B, et al. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 1996;13(5):671-82
  • Krewson CE. Saltzman WM, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 1995;680(1-2):196-206
  • Saltzman WM, Radomsky ML. Drugs released from polymers: diffusion and elimination in brain tissue. Chem Eng Sci 1991;46(10):2429-44
  • Mak M, Fung L, Strasser JF, et al. Distribution of drugs following controlled delivery to the brain interstitium. J Neurooncol 1995;26(2):91-102
  • Haar PJ, Stewart JE, Gillies GT, et al. Quantitative three-dimensional analysis and diffusion modeling of oligonucleotide concentrations after direct intraparenchymal brain infusion. IEEE Trans Biomed Eng 2001;48(5):560-9
  • Nicholson C. Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res 1985;333(2):325-9
  • Nicholson C. Diffusion and related transport mechanisms in brain tissue. Reports Prog Phys 2001;64:815-84
  • Nicholson C, Chen KC, Hrabetova S, et al. Diffusion of molecules in brain extracellular space: theory and experiment. Prog Brain Res 2000;125:129-54
  • Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 1981;321:225-57
  • Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J 1993;65(6):2277-90
  • Tao L, Nicholson C. Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neuroscience 1996;75(3):839-47
  • Jain RK, Transport of molecules across tumor vasculature. Cancer Metastasis Rev 1987;6:559-93
  • Chen ZJ, Gillies GT, Broaddus WC, et al. A realistic brain tissue phantom for intraparenchymal infusion studies. J Neurosurg 2004;101(2):314-22
  • Chen ZJ, Broaddus WC, Viswanathan RR, et al. Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Trans Biomed Eng 2002;49(2):85-96
  • Gillies GT, Allison SW, Tissue BM. Positive pressure infusion of fluorescent nanoparticles as a probe of the structure of brain phantom gelatins. Nanotechnology 2002;13(4):484-6
  • Morrison PF, Laske DW, Bobo H, et al. High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol 1994;266(1 Pt 2):R292-305
  • Morrison PF, Chen MY, Chadwick RS, et al. Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol 1999;277(4 Pt 2):R1218-29
  • Kalyanasundaram S, Calhoun VD, Leong KW. A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am J Physiol 1997;273(5 Pt 2):R1810-21
  • Sarntinoranont M, Banerjee RK, Lonser RR, et al. A computational model of direct interstitial infusion of macromolecules into the spinal cord. Ann Biomed Eng 2003;31(4):448-61
  • Sarntinoranont M, Rooney F, Ferrari M. Interstitial stress and fluid pressure within a growing tumor. Ann Biomed Eng 2003;31(3):327-35
  • Linninger AA, Somayaji MR, Erickson T, et al. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J Biomech 2008;41(10):2176-87
  • Linninger AA, Somayaji MR, Mekarski M, et al. Prediction of convection-enhanced drug delivery to the human brain. J Theor Biol 2008;250(1):125-38
  • Ferguson S, Lesniak MS. Convection enhanced drug delivery of novel therapeutic agents to malignant brain tumors. Curr Drug Deliv 2007;4(2):169-80
  • Ferguson SD, Foster K, Yamini B, et al.Expert Rev Anticancer Ther 2007;7(12 Suppl):S79-85
  • Sampson JH, Akabani G, Archer GE, et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro-oncol 2008;10(3):320-9
  • Sampson JH, Akabani G, Archer GE, et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 2003;65(1):27-35
  • Vogelbaum MA. Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J Neurooncol 2007;83(1):97-109
  • Vogelbaum MA, Sampson JH, Kunwar S, et al. Convection-enhanced delivery of Cintredekin Besudotox (interleukin-13-Pe38qqr) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2007;61(5):1031-8
  • Hall WA, Rustamzadeh E, Asher AL. Convection-enhanced delivery in clinical trials. Neurosurg Focus 2003;14(2):e2
  • Hall WA, Sherr GT. Convection-enhanced delivery: targeted toxin treatment of malignant glioma. Neurosurg Focus 2006;20(4): E10
  • Kioi M, Husain SR, Croteau D, et al. Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat 2006;5(3):239-50
  • Patchell RA, Regine WF, Ashton P, et al. A phase I trial of continuously infused intratumoral bleomycin for the treatment of recurrent glioblastoma multiforme. J Neurooncol 2002;60(1):37-42
  • Patel SJ, Shapiro WR, Laske DW, et al. Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery 2005;56(6):1243-52; discussion 1252-3
  • Raghavan R, Brady ML, Rodriguez-Ponce MI, et al. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 2006;20(4):E12
  • Rainov NG, Gorbatyuk K, Heidecke V. Clinical trials with intracerebral convection-enhanced delivery of targeted toxins in malignant glioma. Rev Recent Clin Trials 2008;3(1):2-9
  • Shapiro WR, Carpenter SP, Roberts K, et al. 131I-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma. Expert Opin Biol Ther 2006;6(5):539-45
  • Wersall P, Ohlsson I, Biberfeld P, et al. Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol Immunother 1997;44(3):157-64
  • Hall WA. Convection-enhanced delivery: neurosurgical issues. Curr Drug Targets 2009;10(2):126-30
  • Sampson JH, Raghavan R, Brady ML, et al. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-oncol 2007;9(3):343-53
  • Sampson JH, Brady ML, Petry NA, et al. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery 2007;60(2 Suppl 1):ONS89-98; discussion ONS98-9
  • Wang Y, Yuan F. Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement. Ann Biomed Eng 2006;34(1):114-27
  • Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994;91(6):2076-80
  • Chen MY, Lonser RR, Morrison PF, et al. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 1999;90(2):315-20
  • Groothuis DR, Benalcazar H, Allen CV, et al. Comparison of cytosine arabinoside delivery to rat brain by intravenous, intrathecal, intraventricular and intraparenchymal routes of administration. Brain Res 2000;856(1-2):281-90
  • Kawakami K, Kawakami M, Kioi M, et al. Distribution kinetics of targeted cytotoxin in glioma by bolus or convection-enhanced delivery in a murine model. J Neurosurg 2004;101(6):1004-11
  • Khan A, Jallo GI, Liu YJ, et al. Infusion rates and drug distribution in brain tumor models in rats. J Neurosurg 2005;102(1 Suppl):53-8
  • Lieberman DM, Laske DW, Morrison PF, et al. Convection enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 1995;82(6):1021-9
  • Mackay JA, Deen DF, Szoka FC Jr. Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res 2005;1035(2):139-53
  • Prabhu SS, Broaddus WC, Gillies GT, et al. Distribution of macromolecular dyes in brain using positive pressure infusion: a model for direct controlled delivery of therapeutic agents. Surg Neurol 1998;50(4):367-75; discussion 375
  • Thomale UW, Tyler B, Renard VM, et al. Local chemotherapy in the rat brainstem with multiple catheters: a feasibility study. Childs Nerv Syst 2009;25(1):21-8
  • Sandberg DI, Edgar MA, Souweidane MM. Convection-enhanced delivery into the rat brainstem. J Neurosurg 2002;96(5):885-91
  • Stukel JM, Parks J, Caplan MR, et al. Temporal and spatial control of neural effects following intracerebral microinfusion. J Drug Target 2008;16(3):198-205
  • Al-Kuraya K, Schraml P, Torhorst J, et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 2004;64(23):8534-40
  • Bellail AC, Hunter SB, Brat DJ, et al. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 2004;36(6):1046-69
  • Gingras MC, Roussel E, Bruner JM, et al. Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol 1995;57(1-2):143-53
  • Paulus W, Baur I, Schuppan D, et al. Characterization of integrin receptors in normal and neoplastic human brain. Am J Pathol 1993;143(1):154-63
  • Tucker GC. Integrins: molecular targets in cancer therapy. Curr Oncol Rep 2006;8(2):96-103
  • Caplan MR, Rosca EV. Targeting drugs to combinations of receptors: a modeling analysis of potential specificity. Ann Biomed Eng 2005;33(8):1113-24
  • Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng 2005;7:55-76
  • Chang E, Miller JS, Sun J, et al. Protease-activated quantum dot probes. Biochem Biophys Res Commun 2005;334(4):1317-21
  • Gao X, Chung LW, Nie S. Quantum dots for in vivo molecular and cellular imaging. Methods Mol Biol 2007;374:135-45
  • Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Gao X, Yang L, Petros JA, et al. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005;16(1):63-72
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538-44
  • Nie S, Xing Y, Kim GJ, et al. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007;9:257-88
  • Rhyner MN, Smith AM, Gao X, et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomed 2006;1(2):209-17
  • Ruan G, Agrawal A, Marcus AI, et al. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 2007;129(47):14759-66
  • Rosca EV, Stukel JM, Gillies RJ, et al. Specificity and mobility of biomacromolecular, multivalent constructs for cellular targeting. Biomacromolecules 2007;8(12):3830-5
  • Denardo SJ, Yao Z, Lam KS, et al. Effect of molecular size of pegylated peptide on the pharmacokinetics and tumor targeting in lymphoma-bearing mice.Clin Cancer Res 2003;9(10 Pt 2):3854S-64S
  • Seymour LW, Miyamoto Y, Maeda H, et al. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur J Cancer 1995;31A(5):766-70
  • Stukel JM, Heys JJ, Caplan MR. Optimizing delivery of multivalent targeting constructs for detection of secondary tumors. Ann Biomed Eng 2008;36(7):1291-304

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.