113
Views
11
CrossRef citations to date
0
Altmetric
Review

Delivery of Chlamydia vaccines

, , , , , & show all
Pages 549-562 | Published online: 10 May 2005

Bibliography

  • BUSH RM, EVERETT KD: Molecular evolution of Chlamydiaceae. Int. J. Syst. Eva Microbiol (2001) 51:203–220.
  • SCHACHTER J, STEPHENS RS, TIMMS P et al.: Radical changes to chlamydial taxonomy are not necessary just yet. Int. J. Syst. Evol. MicrobioL (2001) 51:251–253.
  • STEPHENS RS, TAM MR, KUO CC, NOWINSKI RC: Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen characterization. Immunol (1982) 128:1083–1089.
  • STEPHENS RS, WAGAR EA, SCHOOLNIK GK: High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J. Exp. Med. (1988) 167:817–831.
  • BANDEA CI, KUBOTAA K, BROWN TM et al.: Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein (ompl). Sex. Transm. Infect. (2001) 77:419–422.
  • SCHACHTER J: Infection and disease epidemiology. In: Chlamydia: Intracellular Biology Pathogenesis, and Immunity. RS Stephens (Ed.), ASM Press, Washington DC, USA (1999):139–169.
  • WHO: Global prevalence and incidence of selected curable sexually transmitted diseases: overview and estimates (1996).
  • SCHACHTER J, GRAYSTON JT: Epidemiology of human chlamydial infections. In: Chlamydial Infections. RS S GI B G C IN C JT G RG R GL R P S J S WE Stamm (Eds), University of California, Berkeley, CA, USA (1998):3–10.
  • JOHNSON RE, NEWHALL WJ, PAPP JR et al.: Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections - 2002. MMWR Recomm. Rep. (2002) 51:1–40.
  • GROSECLOSE SL, ZAIDI AA, DELISLE SJ, LEVINE WC, LOUIS ME: Estimated incidence and prevalence of genital Chlamydia trachomatis infections in the United States, 1996. Sex. Transm. Dis. (1999) 26:339–344.
  • PAAVONEN J, WOLNER-HANSSEN P: Chlamydia trachomatis: a major threat to reproduction. J. Hum. Reprod (1989) 4:111–124.
  • STAMM WE, GUINAN ME, JOHNSON C, STARCHER T, HOLMES KK, MCCORMACK WM: Effect of treatment regimens for Neisseria gonorrhoeae on simultaneous infection with Chlamydia trachomatis. N Engl. J. Med. (1984) 310:545–549.
  • REES E: Treatment of pelvic inflammatorydisease. Am. J. Obstet. Gynecol (1980) 138:1042–1047.
  • WESTROM L, JOESOEF R, REYNOLDS G, HADGU A, THOMPSON SE: Pelvic inflammatory inflammatory disease and infertility: a cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopy results. Sex. Transm. Dis. (1992) 19:185–192.
  • MAHDI OS, BYRNE GI, KALAYOGLU M: Emerging strategies in the diagnosis, prevention and treatment of chlamydial infections. Expert Opin. Ther. Patents (2001) 11:1253–1265.
  • SCHACHTER J, OSOBA AO: Lymphogranuloma venereum. Br. Med. Bull. (1983) 39:151–154.
  • MABEY D, PEELING RW: Lymphogranuloma venereum. Sex Transm. Infect (2002) 78:90–92.
  • NIEUWENHUIS RF, OSSEWAARDE JM, GOTZ HM et al.: Resurgence of lymphogranuloma venereum in Western Europe: an outbreak of Chlamydia trachomatis serovar L2 proctitis in The Netherlands among men who have sex with men. Clin. Infect. Dis. (2004) 39:996–1003.
  • Reports evidence of increasing problems of Chlamydia.
  • CDC: Sexually transmitted disease surveillance, 2000. GA Atlanta (Ed.), US Department of Health and Human Services, CDC, Atlanta, GA, USA (2001).
  • THIOR I, DIOUF G, DIAW IK et ell.: Sexually transmitted diseases and risk of HIV infection in men attending a sexually transmitted diseases clinic in Dakar, Senegal. Aft. j Reprod. Health (1997) 1:26–35.
  • WILKINSON D, RUTHERFORD G: Population-based interventions for reducing sexually transmitted infections, including HIV infection. Cochrane Database Syst. Rev. (2001) (2) :CD001220.
  • MONNO R, MAGGI P, CARBONARA S et al.: Chlamydia trachomatis and Mycobaterium tuberculosis lung infection in an HIV positive homosexual man. AIDS Patient Care STDs (2001) 15:607–610.
  • KILMARX PH, MOCK PA, LEVINE WC: Effect of Chlamydia trachomatis coinfection on HIV shedding in genital tract secretion. Sex. Transm. Dis. (2001) 28:347–348.
  • MCCLELLAND RS, WANG CC, MANDALIYA K et al.: Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. AIDS (2001) 15:105–110.
  • CHESSON HW, PINKERTON SD: Sexually transmitted diseases and the increased risk for HIV transmission: implications for cost-effectiveness analyses of sexually transmitted disease prevention interventions. J. Acquir. immune Defic. Syndr (2000) 24:48–56.
  • •Chlamydia infection and HIV risk.
  • ROTCHFORD K, STRUM AW, WILKINSON D: Effect of coinfection with STDs and STD treatment on HIV shedding in genital-tract secretions: systematic review and data synthesis. Sex. Transm. Dis. (2000) 27:243–248.
  • KUO CC, JACKSON LA, CAMPBELL LA, GRAYSTON JT: Chlamydia pneumoniae (TWAR). Clin. Microbiol Rev. (1995) 8: 451–461.
  • GAILLAT J: Clinical manifestations of Chlamydia pneumoniae infections. Revue Med. Interne (1996) 17:987–999.
  • SAIKKU P, WANG SP, KLEEMOLA M, BRANDER E, RUSANEN E, GRAYSTON JT: An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. J. Infect. Dis. (1985) 151:832–839.
  • COHEN CR, BRUNHAM RC: Pathogenesis of Chlamydia induced pelvic inflammatory disease. Sex. Transm. Infect. (1999) 75:21–24.
  • SCHACHTER J: NAATs to diagnose Chlamydia trachomatis genital infection: a promise still unfulfilled. Expert Rev. MoL Diagn. (2001) 1:137–144.
  • THEIN J, ZHAO P, LIU H et al.: Does clinical diagnosis indicate chlamydial infection in areas with a low prevalence of trachoma? Ophthalmic Epidemiol (2002) 9:263–269.
  • BRAGINA EY, GOMBERG MA, DMITRIEV GA: Electron microscopic evidence of persistent chlamydial infection following treatment. J. Eur. Acad. Dermatol VenereoL (2001) 15:405–409.
  • BYRNE GI: Chlamydial treatment failures: a persistent problem? J. Eur. Acad. DermatoL VenereoL (2001) 15:381.
  • •The possibility that treatment failures are due to persistence.
  • DRESES-WERRINGLOER U, PADUBRIN I, JURGENS-SAATHOFF B, HUDSON AP, ZEIDLER H, KOHLER L: Persistence of Chlamydia trachomatis is induced by ciprofloxacin and ofloxacin in vitro. Antimicrob. Agents Chemother. (2000) 44:3288–3297.
  • MIYASHITA N, FUKANO H, HARA H, YOSHIDA K, NIKI Y, MATSUSHIMA T: Recurrent pneumonia due to persistent Chlamydia pneumoniae infection. Intern. Med. (2002) 41:30–33.
  • REES E, TAIT IA, HOBSON D, KARAYIANNIS P, LEE N: Persistence of chlamydial infection after treatment for neonatal conjunctivitis. Arch. Dis. Child. (1981) 56:193–198.
  • BABALOLA OE, BAGE SD: The persistence of chlamydial inclusions in clinically quiescent trachoma. West Aft. Med. (1992) 11:55–61.
  • THEJLS H, GNARPE J, LUNDKVIST 0, HEIMER G, LARSSON G, VICTOR k Diagnosis and prevalence of persistent Chlamydia infection in infertile women: tissue culture, direct antigen detection, and serology. Fertil Steril (1991) 55:304–310.
  • DEAN D, SUCHLAND RJ, STAMM WE: Evidence for long-term cervical persistence of Chlamydia trachomatis by ompl genotyping. J. Infect Dis. (2000) 182:909–916.
  • SMITH A, MUNOZ B, HSIEH YH, BOBO L, MKOCHA H, WEST S: OmpA genotypic evidence for persistent ocular Chlamydia trachomatis infection in Tanzania village women. Ophthalmic Epidemiol (2001) 8:127–135.
  • BLACK CM, MORSE SA: The use of molecular techniques for the diagnosis and epidemiologic study of sexually transmitted infections. Curr. Infect. Dis. Rep. (2000) 2:31–43.
  • JOHNSON RE, GREEN TA, SCHACHTER J et al.: Evaluation of nucleic acid amplification tests as reference tests for Chlamydia trachomatis infections in asymptomatic men. J. Clin. MicrobioL (2000) 38:4382–4386.
  • STERLIN M, SHAFER MA, TEBB K et al.: What sexually transmitted disease screening method does the adolescent prefer? Adolescents' attitudes toward first-void urine, self-collected vaginal swab, and pelvic examination. Arch. Pediatr. Adolesc. (2002) 156:588–591.
  • HOLM SO, JHA HC, BHATTA RC et al.: Comparison of two azithromycin distribution strategies for controlling trachoma in Nepal. Bull. World Health Organ. (2001) 79:194–200.
  • DIAMANT J, BENIS R, SCHACHTER J et al.: Pooling of Chlamydia laboratory tests to determine the prevalence of ocular Chlamydia trachomatis infection. Ophthalmic Epidemiol. (2001) 8:109–117.
  • BAIN DL, LIETMAN T, RASMUSSEN S et al.: Chlamydial genovar distribution after community wide antibiotic treatment. Infect. Dis. (2001) 184:1581–1588.
  • DAWSON CR, SCHACHTER J: Should trachoma be treated with antibiotics? Lancet (2002) 359:184–185.
  • DE LA MAZA Mk DE MAZA LM: A new computer model for estimating the impact of vaccination protocols and its application to the study of Chlamydia trachomatis genital infections. Vaccine (1995) 13:119–127.
  • ••Computer modelling of the potentialimpact of a vaccination.
  • IGIETSEME JU, EKO FO, BLACK CM: Contemporary approaches to designing and evaluating vaccines against Chlamydia. Expert Rev. Vaccines (2003) 2:129–146.
  • MORRISON RP, CALDWELL HD: Immunity to murine chlamydial genital infection. Infect. Immun. (2002) 70:2741–2751.
  • LOOMIS PW, STARNBACH MN: T cell responses to Chlamydia trachomatis. Current Opin. Microbiol (2002) 5:87–91.
  • IGIETSEME JU, EKO FO, HE Q, BLACK CM: Antibody regulation of T-cell immunity: implications for vaccine strategies against intracellular pathogens. Expert Rev. Vaccines (2004) 3:23–34.
  • ROTTENBERG ME, GIGLIOTTI-ROTHFUCHS A, WIGZELL H: The role of IFN-gamma in the outcome of chlamydial infection. Curr. Opin. Immunol (2002) 14:444–451.
  • FIESCHI C, CASANOVA J: The role of interleukin-12 in human infectious diseases: only a faint signature. Eur. j Immunol. (2003) 33:1461–1464.
  • BRUNHAM RC, PEELING RW: Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infra. Agents Dis. (1994) 3:218–233.
  • LAVERDA D, KALAYOGLU BYRNE GI: Chlamydial heat shock proteins and disease pathology: new paradigms for old problems? Infect Dis Obstet. Gynecol. (1999) 7:64–71.
  • TAYLOR HR, MACLEAN IW, BRUNHAM RC, PALS, WHITTUM-HUDSON J: Chlamydial heat shock proteins and trachoma. Infect. Immun. (1990) 58:3061–3063.
  • HASSELL AB, REYNOLDS DJ, DEACON M, GASTON JSH, PEARCE JH: Identification of T-cell stimulatory antigens of Chlamydia trachomatis using synovial fluid-derived T-cell clones. Immunology (1993) 73:513–519.
  • KALMAN S, MITCHELL W, MARATHE R et al.: Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. (1999) 21:385–389.
  • READ TD, BRUNHAM RC, SHEN C et al.: Genome sequence of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. (2000) 28:1397–1406.
  • STEPHENS RS: Chlamydial Genomics and vaccine antigen discovery. J. Infect. Dis. (2000) 181:S521–S523.
  • STEPHENS RS, KALMAN S, LAMMEL C et al.: Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science (1998) 282:754–759.
  • BELLAND RJ, SCIDMORE MA, CRANE DD et al.: Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. PNAS (2001) 98:13984–13989.
  • SU H, WATKINS NG, ZHANG YX, CALDWELL HD: Chlamydia trachomatis-host cell interactions: Role of the chlamydial major outer membrane protein as an adhesin. Infect. Immun. (1990) 58:1017–1025.
  • WYLLIE S, LONGBOTTOM D, HERRING AJ, ASHLEY RH: Single channel analysis of recombinant major outer membrane protein porins from Chlamydia psittaci and Chlamydia pneumoniae. FEBS Lett. (1999) 445:192–196.
  • BAEHR W, ZHANG YX, JOSEPH T et al.: Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc. Natl. Acad. Sci. USA (1988) 85:4000–4004.
  • WARD ME: Chlamydial vaccine - future trends./ Infect. (1992) (Suppl. 1):11–26.
  • DONG-Ji Z, YANG X, SHEN C, LU H, MURDIN A, BRUNHAM RC: Priming with Chlamydia trachomatis major outer membrane protein (MOMP) DNA followed by MOMP-ISCOM boosting enhances protection and is associated with increased immunoglobulin A and Thl cellular immune responses. Infect. Immun (2000) 68:3074–3078.
  • JACKSON JW, MAISONNEUVE J, TAYLOR RB, TIAN J, YANG H, HARRIS A: Immunization with a high molecular weight protein (pmpG) from Chlamydia trachomatis confers heterotypic protection against infertility. 101st General Meeting of the American Society for Microbiology. Orlando, FL, USA (200 0: 333.
  • JEN SS, STROMBERG EJ, PROBST P, BHATIA A, SKEIKY YAW: Discovery of new vaccine candidates for prevention and treatment of Chlamydia. 101st General Meeting of the American Society for Microbiology. Orlando, FL, USA (200 0: 343.
  • MONTIGIANI S, FALUGI F, SCARSELLI M et al.: Genomic approach for analysis of surface proteins in Chlamydia pneumoniae. Infect. Immun. (2002) 70:368–379.
  • ROCKEY DD, STEPHENS RS: Genome sequencing and our understanding of chlamydiae. Infect. Immun. (2000) 68:5473–5479.
  • STEPHENS RS, LAMMEL CJ: Chlamydiaouter membrane protein discovery using genomics. Curr. Opin. Microbiol. (2001) 4:16–20.
  • KAWA DE, STEPHENS RS: Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity. J. Immunol. (2002) 168:5184–5191.
  • MURDIN AD, DUNN P, SODOYER R et al.: Use of a mouse lung challenge model to identify antigens protective against Chlamydia pneumoniae lung infection. J. Infect. Dis. (2000) 181:S544.
  • GHAEM-MAGHAMI S, RATTI G, GHAEM-MAGHAMI M et al.: Mucosal and systemic immune responses to plasmid protein pgp3 in patients with genital and ocular Chlamydia trachomatis infection. Clin. Exp. Immunol. (2003) 132:436–442.
  • DONATI M, SAMBRI V, COMANDUCCI M et al.: DNA immunzation with pgp3 gene of Chlamydia trachomatis inhibits the spread of chlamydial infection from the lower to the upper genital tract in C3H/HeN mice. Vaccine (2003) 21:1089–1093.
  • SHARMA J, BOSNIC AM, PIPER JM, ZHONG G: Human antibody responses to a Chlamydia-secreted protease factor. Infect. Immun. (2004) 72:7164–7171.
  • SLEPENKIN A. DE MAZA LM, PETERSON EM: Interaction between components of the type III Secretion system of chlamydiaceae. j Bacteriol (2005) 187:473–479.
  • PALS, THEODOR I, PETERSON EM, DE MAZA LM: Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune respose against a genital challenge. Infect. Immun. (2001) 69:6240–6247.
  • RANK RG: Animal models of urogenitalinfections. Methods Enqmol. (1994) 235:83–93.
  • RANK RG: Models of immunity. In: Chlamydia: Intracellular Biology, Pathogenesis and Immunity. RS Stephens (Ed.), ASM Press, Washington DC, USA 1999:239–295.
  • RANK RG, WHITTUM-HUDSON JA:Animal models for ocular infections.Method Enzymol. (1994) 235:69–83.
  • SAIKKU P, LAITINEN K, LEINONEN M: Animal models for Chlamydia pneumoniae infection. Atherosclerosis (1998) 140\(Suppl. 1):S17–S19.
  • RANK RG, BOWLIN AK, REED RL, DARVILLE T: Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect. Immun. (2003) 71:6148–6154.
  • IGIETSEME JU, EKO FO, HE Q, BANDEA C, BLACK C: Developing effective delivery systems for Chlamydia vaccines. Curr. Opin. MoL Therapeutics (2004) 6:182–194.
  • SCHIJNS VEJC: Antigen delivery systems and immunostimulation. Vet. Immunol Immunopathol (2002) 87:195–198.
  • RAYCHAUDHURI S, ROCK KL: Fully mobilizing host defense: building better vacines. Nat. BiotechnoL (1998) 16:1025–1031.
  • GREEN BA, BAKER SM: Recent advances and novel strategies in vaccine development. Curr. Opin. Microbiol 42002) 5: 483–488.
  • FLETCHER MA: Vaccine candidate in STD. Int. J. STD AIDS (2001) 12:419–422.
  • IGIETSEME JU, ANANABA GA, BOLTER J et al.: Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for enhanced specific Thl induction: potential for cellular vaccine development. J. Immunol. (2000) 164:4212–4219.
  • ••Cellular vaccine producing sterilisingprotection against Chlamydia.
  • SVANHOLM C, BANDHOLTZ L, CASTANOS-VELEZ E, WIGZELL H, ROTTENBERG ME: Protective DNA immunization against Chlamydia pneumoniae. Scand. j Immunol. (2000) 51:345–353.
  • BRUNHAM RC, ZHANG DJ, YANG X, MCCLARTY GM: The potential for vaccine development against chlamydial infection and disease. J. Infect. Dis. (2000) 181:S538–S543.
  • BRUNHAM RC, ZHANG DJ: Transgene as vaccine for Chlamydia. Am. Heart J. (1999) 138:S519–S522.
  • ZHANG DJ, YANG X, BERRY J, SHEN C, MCCLARTY G, BRUNHAM RC: DNA vaccination with the outer membrane protein gene induces acquired immunity to Chlamydia trachomatis (mouse pneumonitis) infection. J. Infra. Dis. (1997) 176: 1035–1040.
  • WIZEL B, STARCHER BC, SAMTEN B et al.: Multiple Chlamydia pneumoniae antigens prime CD8* Tcl responses that inhibit intracellular growth of this vacuolar pathogen. J. Immunol (2002) 169:2524–2535.
  • GURUNATHAN S, KLINMAN DM, SEDER RA: DNA vaccines: immunology, application, and optimization. Ann. Rev. Immunol (2000) 18:927–974.
  • VANROMPAY D, COX E, VOLCKAERT G, GODDEERIS B: Turkeys are protected from infection with Chlamydia psittaci by plasmid DNA vaccination against the major outer membrane protein. Clin. Exp. Immunol. (1999) 118:49–55.
  • STAGG AJ: Vaccines against Chlamydia: approaches and progress. MoL Med. Today (1998) 4:166–173.
  • PALS, BARNHART KM, WEI Q, ABAI AM, PETERSON EM, DE MAZA LM: Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against genital challenge. Vaccine (1999) 17:459–465.
  • KLINMAN DM, BARNHART KM, CONOVER J: CpG motifs as immune adjuvants. Vaccine (1999) 17:19–25.
  • IWASAKI k STIERNHOLM BJ, CHAN AK, BERINSTEIN NL, BARBER BH: Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. Immunol (1997) 158:4591–4601.
  • GURUNATHAN S, IRVINE KR, WU CY et al.: CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. Immunol (1998) 161:4563–4571.
  • LU H, XING Z, BRUNHAM RC: GM-CSF transgene-based adjuvant allows the establishment of protective mucosal immunity following vaccination with inactivated Chlamydia trachomatis. Immunol. (2002) 169:6324-6331. Vaccine delivery in combination with immunomodulatory cytokine.
  • MURDIN AD, SU H, KLEIN MH, WELL HD: Poliovirus hybrids expressing neutralization epitopes from variable domains I and IV of the major outer membrane protein of Chlamydia trachomatis elicit broadly cross-reactive C. trachomatis-neutralizing antibodies. Infect. Immun. (1995) 63:1116–1121.
  • STARNBACH MN, LOOMIS WP, OVENDALE P et al.: An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8(*) T cell response. Immunol. (2003) 171:4742–4749.
  • BABIUK LA, TIKOO SK: Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J. BiotechnoL (2000) 83:105–113.
  • HEWSON R: RNA viruses: emerging vectors for vaccination and gene therapy. MoL Med. Today (2000) 6:28–35.
  • BENNINK JR, YEWDELL Recombinant vaccinia viruses as vectors for studying T lymphocyte specificity and function. Curr. Top. MicrobioL Immunol (1990) 163:153–184.
  • SCHLESINGER S, DUBENSKY TW: Alphavirus vectors for gene expression and vaccine. Curr. Opin. Biotechnol (1999) 10:434–439.
  • SINGH M, O'HAGAN D: Advances in vaccine adjuvants. Nat. BiotechnoL (1999) 17:1075–1081.
  • PALS, DAVIS HL, PETERSON EM, DE MAZA LM: Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynucleotides as an adjuvant induces a protective immune response against an intranasal challenge. Infra. Immun. (2002) 70:4812–4817.
  • PALS, LUKE CJ, BARBOUR AG, PETERSON EM, DE MAZA LM: Immunization with the Chlamydia trachomatis major outer membrane protein, using the outer surface protein A of Borrelia burgdorfiri as an adjuvant, can induce protection against a chlamydial genital challenge. Vaccine (2003) 21:1455–1465.
  • TURNER MS, GIFFARD PM: Expression of Chlamydia psittaci- and human immunodeficiency virus-derived antigens on the cell surface of Lactobacillus firmentum BR11 as fusion to bspA. Infect. Immun. (1999) 67:5486–5489.
  • GENTSCHEV I, DIETRICH G, SPRENG S et al.: Delivery of protein antigens and DNA by virulence-attenuated strains of Salmonella typhimurium and Listeria monocytogenes. J. BiotechnoL (2000) 83:19–26.
  • EKO FO, WITTE A, HUTER V et ell.: New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine (1999) 17:1643–1649.
  • IGIETSEME JU, BLACK CM, CALDWELL HD: Chlamydia vaccine: strategies and status. BioDrugs (2002) 16:19–35.
  • EKO FO, LUBITZ W, MCMILLAN L et al.: Recombinant Vibrio cholerae ghost as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine (2003) 21:1694–1703.
  • SU H, MESSER R, -WHITMIRE W, FISCHER E, PORTIS JC, CALDWELL HD: Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable Chlamydiae. J.Exp.Med (1998) 188:809–818.
  • CITTERIO S, RESCIGNO M, FOTI M et al.: Dendritic cells as natural adjuvants. Methods (1999) 19:142–147.
  • GRAYSTON JT, WANG SP, YANG YF, WOOLRIDGE RL: The effect of trachoma virus vaccine on the course of experimental trachoma infection in blind human volunteers. J. Exp. Med (1962) 115:10094022.
  • RAMSEY KH, COTTER TW, SALYER RD et al.: Prior genital infection with a murine or human biovar of Chlamydia trachomatis protects mice against heterotypic challenge infection. Infra. Immun. (1999) 67:3019–3025.
  • HEIJNEN IAFM, VAN VUGT MJ, FANGER NA et al. Antigen targeting to myeloid-specific human FcicRI/CD64 triggers enhanced antibody responses in transgenic mice. J. Clin. Invest. (1996) 97:331–338.
  • GOSSELIN EJ, WARDWELL K, GOSSELIN DR, ALTER N, FISHER JL, GUYRE PM: Enhanced antigen presentation using human Fck receptor (monocyte/macrophage)-specific immunogens. J. ImmunoL (1992) 149:3477–3481.
  • MOORE T, ANANABA GA, BOLTER J et al.: Fc Receptors regulation of protective immunity against Chlamydia trachomatis. Immunol (2002) 105:213–221.
  • MOORE T, EKWOROMADU C, EKO F et al.: Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J. Infect. Dis. (2003) 188:617–624.
  • WHITTUM-HUDSON JA, ANN LL, SALTZMAN WM, PRENDERGAST RA, MACDONALD AB: Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat. Med. (1996) 2:1116–1121.
  • WHITTUM-HUDSON JA, RUDY D, GERARD H et al.: The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis. Vaccine (2001) 19:4061–4071.
  • TAKEUCHI O, AKIRA S: Toll-like receptors: their physiological role and signal transduction system. Int. ImmunopharmacoL (2001) 1:625–635.
  • BENMOHAMED L, WECHSLER SL, NESBURN AB: Lipopeptide vaccines-yesterday, today, and tomorrow. Lancet Infect Dis (2002) 2:425–431.
  • JACKSON DC, LAU YF, LET et al.: A totally synthetic vaccine of generic structure that targets toll-like receptor 2 on dendritic cells and promote antibody or cytotoxic T cell responses. Proc. NatL Acad. Sci. USA (2004) 101:15440–15445.
  • •Lipoproteins as vaccine delivery systems.
  • WU H-Y, RUSSELL MW: Nasal lymphoid tissue, intranasal immunization, and compartmentalization of the common mucosal immune system. ImmunoL Res. (1997) 16:187–201.
  • HOLMGREN J, CZERKINSKY C, LYCKE N, SVENNERHOLM AM: Mucosal immunity: implications for vaccine development. immunobidogy (1992) 184:157–179.
  • MCGHEE JR, MESTECKY J, DERTZBAUGH MT, ELDRIDGE JH, HIRASAWA M, KIYONO H: The mucosal immune system: from fundamental concepts to vaccine development. Vaccine (1992) 10:75–88.
  • PALS, PETERSON EM, DE MAZA LM: Intranasal immunization induces long-term protection in mice against a Chlamydia trachomatis genital challenge. Infect. Immun. (1996) 64:5341–5348.
  • PALS, THEODOR I, PETERSON EM, DE MAZA LM: Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect. Immun (1997) 65:3361–3369.
  • IGIETSEME JU, URIRI IM, KUMAR SN et al.: Route of infection that induces a high intensity of gamma interferon-secreting T cells in the genital tract produces optimal protection against Chlamydia trachomatis infection in mice. Infect. Immun (1998) 66:4030–4035.
  • ••Effect of the route of delivery on theinduction of protective immunity.
  • WU H-Y, NIKOLOVA EB, BEAGLEY KW, RUSSELL MW: Induction of antibody-secreting cells and T helper and memory cells in murine nasal lymphoid tissue. Immunology (1996) 88:493–500.
  • GALLICHAN WS: Specific secretory immune responses in the female genital tract following intranasal immunization with a recombinant adenovirus expressing glycoprotein B of herpes simplex virus. Vaccine (1995) 13:1589–1595.
  • STAATS HF, MONTGOMERY SP, PALKER TJ: Intranasal immunization is superior to vaginal, gastric, or rectal immunization for induction of systemic and mucosal anti-HIV antibody responses. AIDS Res. Hum. Retroviruses (1997) 13:945–952.
  • •Value of intranasal route in vaccination against STDs.
  • BONECCHI R, BIANCHI G, BORDIGNON PP et al.: Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (This) and Th2s. J. Exp. Med (1998) 187:129–134.
  • IGIETSEME JU, RANK RG: Susceptibility to reinfection after a primary chlamydial genital infection is associated with a decrease of antigen-specific T cells in the genital tract. Infect. Immun. (1991) 59:1346–1351.
  • KELLY KA, RANK RG: Identification of homing receptors that mediate the recruitment of CD4 T cells to the genital tract following intravaginal infection with Chlamydia trachomatis. Infect. Immun (1997) 65:5198–5208.
  • IGIETSEME JU, PORTIS JL, PERRY LL: Inflammation and clearance of Chlamydia trachomatis in enteric and nonenteric mucosae. Infect. Immun. (2001) 69:1832–1840.
  • IGIETSEME JU, MURDIN A: Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect. Immun. (2000) 68:6798–6806.
  • Influenza virus vaccine live intranasal-MedImmune vaccines: CAIV-T, influenza vaccine live intranasal. Drugs R D (2003) 4:312–319.
  • GRUBER WC: The role of live influenza vaccines in children. Vaccine (2002) 20:S66–S73.
  • WATANABE T, WATANABE S, NODA T, FUJII Y, KAWAOKA Y: Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. J. Viral. (2003) 77:10575–10583
  • Use of influenza virus as vaccine delivery vector.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.