227
Views
31
CrossRef citations to date
0
Altmetric
Review

Ophthalmic drug delivery considerations at the cellular level: drug-metabolising enzymes and transporters

, , &
Pages 891-908 | Published online: 16 Sep 2005

Bibliography

  • the US: prevalence of adult vision impairment and age-related eye disease in America. Prevent Blindness America (2002).
  • ZIMMERMAN TJ, LEADER B, KAUFMAN HE: Advances in ocular pharmacology. Ann. Rev Pharmacol Toxicol (1980) 20:415–428.
  • LEE VH: Precorneal, corneal and postcorneal factors. In: Ophthalmic Drug Delivery Systems. AK Mitra (Ed.), Marcel Dekker, Inc., New York, NY, USA (1993):59–81.
  • DUVVURI S, MAJUMDAR S, MITRA AK: Role of metabolism in ocular drug delivery. Curr. Drug Metab. (2004) 5:507–515.
  • PARKINSON A: An overview of current cytochrome P450 technology for assessing the safety and efficacy of new materials. Toxicol. Pathol. (1996) 24:48–57.
  • PARKINSON A: Biotransformation of xenobiotics. In: Casarett & Doulic Toxicology: the basic science of poisons. CD Klaassen (Ed.), McGraw-Hill, New York, NY, USA (1996):113–186.
  • WILKINSON GR: Pharmacokinetics. In: Goodman and Gilman's: the pharmacological basis of therapeutics. AJ H LE L A Goodman Gilman (Eds), McGraw-Hill, New York, NY, USA (2001)3–30.
  • SHICHI H: Microsomal electron transfer system of bovine retinal pigment epithelium. Exp. Eye Res. (1969) 8:60–68.
  • •The first published report of a microsomal electron transfer system in any ocular tissue.
  • MCAVOY M, SINGH AK, SHICHI H:hi situ hybridization of Cyplal, Cypla2 and Ah receptor mRNAs expressed in murine ocular tissues. Exp. Eye Res. (1996) 62:449–452.
  • ZHAO C, SHICHI H: Immunocytochemical study of cytochrome P450 (1A1/1A2) induction in murine ocular tissues. Exp. Eye Res. (1995) 60:143–152.
  • XIE Q, ZHANG QY, ZHANG Y et al: Induction of mouse CYP2J by pyrazole in the eye, kidney, liver, lung, olfactory mucosa, and small intestine but not in the heart. Drug Metab. Dispas. (2000) 28:1311–1316.
  • TSAO CC, COULTER SJ, CHIEN A et al.: Identification and localization of five CYP2Cs in murine extrahepatic tissues and their metabolism of arachidonic acid to regio- and stereoselective products. Pharmacol Exp. Ther. (2001) 299:39–47.
  • ATTAR M, LING KH, TAN G-LIUDD et al: Cytochrome P450 3A expression and activity in the rabbit lacrimal gland: glucocorticoid modulation and the impact on androgen metabolism. Invest. Ophthalmol. Vis. Sci. (2005) (In press).
  • •The first published report of CYP3A expression and activity, an enzyme responsible for steroid deactivation, in the lacrimal gland, a steroid sensitive tissue.
  • ATTAR M, LEE, TAN G-LIUDS et al.: Characterization of cytochrome P450 1A, 2D and 3A in the rabbit eye. Presented at the sixth annual meeting of the Association of Ophthalmolgy and Pharmacology Therapeutics, Kaui, HI, USA (2003).
  • MASTYUGIN V, AVERSA E, BONAZZI A et al: Hypoxia-induced production of 12-hydroxyeicosanoids in the corneal epithelium: involvement of a cytochrome P4504B1 isoform. Pharmacol. Exp. Ther. (1999) 289:1611–1619.
  • STOILOV I, AKARSU AN, SARFARAZI M: Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet. (1997) 6:641–647.
  • STOILOV I, AKARSU AN, ALOZIE I et al.: Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am. J. Hum. Genet. (1998) 62:573–584.
  • WAXMAN DJ, ATTISANO C, GUENGERICH FP et al.: Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P450 enzyme. Arch. Biochem. Biophys. (1988) 263:424–436.
  • MADHU C, DINH V, BABUSIS D et al: Tissue specific distribution of cytochrome P450 isozymes in the monkey eye. Annual meeting of the Association for Research in Vision and Ophthalmology Proceedings, Fort Lauderdale, Florida, USA (1999).
  • MADHU C, DINH V, BABUSIS D et al: Expression of cytochrome P450 isoenzymes in dog and human eye. Fourteenth annual meeting of the International Socie0, for the Study of Xenobiotics Proceedings (1999).
  • LEE VH, CHIEN DS, SASAKI H: Ocularketone reductase distribution and its role in the metabolism of ocularly applied levobunolol in the pigmented rabbit. Pharmacol Exp. Ther. (1988) 246:871–878.
  • BERKMAN CE, PARK SB, WRIGHTON SA et al.: LI vitro-in vivo correlations of human (S)-nicotine metabolism. Biochem. Pharmacol (1995) 50:565–570.
  • HUANG DY, FURUKAWA A, ICHIKAWA Y: Molecular cloning of retinal oxidase/aldehyde oxidase cDNAs from rabbit and mouse livers and functional expression of recombinant mouse retinal oxidase cDNA in Escherichia coli. Arch. Biochem. Biophys. (1999) 364:264–272.
  • SHIMADA S, MISHIMA H, KITAMURA S et al.: Nicotinamide Noxide reductase activity in bovine and rabbit eyes. Invest. Ophthalmol. 1/is. Li. (1987) 28:1204–1206.
  • ACHEAMPONG AA, CHIEN DS, LAM S et al.: Characterization of brimonidine metabolism with rat, rabbit, dog, monkey and human liver fractions and rabbit liver aldehyde oxidase. Xenobiotica (1996) 26:1035–1055.
  • ACHEAMPONG AA, SHACKLETON M, TANG-LIU DD: Comparative ocular pharmacokinetics of brimonidine after a single dose application to the eyes of albino and pigmented rabbits. Drug Metab. Dispos. (1995) 23:708–712.
  • TANG-LIU DD, LIU S, NEFF J et al: Disposition of levobunolol after an ophthalmic dose to rabbits. J. Pharm. Sci. (1987) 76:780–783.
  • SCHOENWALD RD, ZHU J: The ocular pharmacokinetics of ketanserin and its metabolite, ketanserinol, in albino rabbits. J. Ocul. Pharmacol Ther. (2000) 16:481–495.
  • TANG-LIU DD, SHACKLETON M, RICHMAN JB: Ocular metabolism of levobunolol. Or& Pharmacol (1988) 4:269–278.
  • TANG-LIU DD, RICHMAN JB: The effect of pilocarpine on ocular levobunolol absorption from ophthalmic solutions. J. Ocul. Pharmacol (1994) 10:605–615.
  • ESSNER E, GORRIN GM, GRIEWSKI RA: Localization of lysosomal enzymes in retinal pigment epithelium of rats with inherited retinal dystrophy. Invest. Ophthalmol 1/is. Sci. (1978) 17:278–288.
  • LEE VH, CHANG SC, OSHIRO CM et al.: Ocular esterase composition in albino and pigmented rabbits: possible implications in ocular prodrug design and evaluation. Curr. Eye Res. (1985) 4:1117–1125.
  • STAMPFLI HF, QUON CY: Polymorphic metabolism of flestolol and other ester containing compounds by a carboxylesterase in New Zealand white rabbit blood and cornea. Res. Commun. Mol. Pathol Pharmacol (1995) 88:87–97.
  • LEE VH, IIMOTO DS, TAKEMOTO KA: Subcellular distribution of esterases in the bovine eye. Curr. Eye Res. (1982) 2:869–876.
  • LEE VH, MORIMOTO KW, STRATFORD RE Jr: Esterase distribution in the rabbit cornea and its implications in ocular drug bioavailability. Biopharm. Drug Dispos. (1982) 3:291–300.
  • ANDERSON JA, DAVIS WL, WET CP: Site of ocular hydrolysis of a prodrug, dipivefrin, and a comparison of its ocular metabolism with that of the parent compound, adrenaline. Invest. Ophthalmol 1/is. Sci. (1980) 19:817–823.
  • MINDEL JS, YABLONSKI ME, TAVITIAN HO et al: Dipivefrin and echothiophate. Efficacy of combined use in human beings. Arch. Ophthalmol. (1981) 99:1583–1586.
  • PUTNAM ML, SCHOENWALD RD, DUFFEL MW et al: Ocular disposition of aminozolamide in the rabbit eye. Invest. Ophthalmol 1/is. Sci. (1987) 28:1373–1382.
  • CAMPBELL DA, SCHOENWALD RD, DUFFEL MW et al: Characterization of arylamine acetyltransferase in the rabbit eye. Invest. Ophthalmol 1/is. Li. (1991) 32:2190–2200.
  • SRIVASTAVA SK, SINGHAL SS, BAJPAI KK et al.: A group of novel glutathione ..Ctransferase isozymes showing high activity towards 4-hydroxy-2-nonenal are present in bovine ocular tissues. Exp. Eye Res. (1994) 59:151–159.
  • SINGHAL SS, GODLEY BE, CHANDRA A et al: Induction of glutathione ..Ctransferase hGST 5.8 is an early response to oxidative stress in RPE cells. Invest. Ophthalmol 1/is. Sci. (1999) 40: 2652–2659.
  • DEY S, ANAND BS, PATEL J et al.: Transporters/receptors in the anterior chamber: pathways to explore ocular drug delivery strategies. Expert Opin. Biol. Ther. (2003) 3:23–44.
  • ITO A, YAMAGUCHI K, TOMITA H et al: Distribution of rat organic anion transporting polypeptide-E (oatp-E) in the rat eye. Invest. Ophthalmol 1/is. Sci. (2003) 44:4877–4884.
  • UEDA H, HORIBE Y, KIM KJ et al: Functional characterization of organic cation drug transport in the pigmented rabbit conjunctiva. Invest. Ophthalmol 1/is. Sci. (2000) 41:870–876.
  • MAJUMDAR S, TIRUCHERAI GS, PAL D et al.: Functional differences in nucleoside and nucleobase transporters expressed on the rabbit corneal epithelial cell line (SIRC) and isolated rabbit cornea. AAPS PharmSci. (2003) 5:E15.
  • DUVVURI S, MAJUMDAR S, MITRA AK: Drug delivery to the retina: challenges and opportunities. Expert Opin. Biol. Ther. (2003) 3:45–56.
  • OCHELTREE SM, KEEP RF, SHEN H et al: Preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): lack of functional activity in RPE plasma membranes. Pharm. Res. (2003) 20:1364–1372.
  • RAJAN PD, KEKUDA R, CHANCY CD et al: Expression of the extraneuronal monoamine transporter in RPE and neural retina. Curl: Eye Res. (2000) 20:195–204.
  • MAJUMDAR S, MACHA S, PAL D et al: Mechanism of ganciclovir uptake by rabbit retina and human retinal pigmented epithelium cell line ARPE-19. Curr. Eye Res. (2004) 29:127–136.
  • DEY S, GUNDA S, MITRA AK: Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J. Pharmacol Exp. Ther. (2004) 311:246–255.
  • DEY S, PATEL J, ANAND BS et al: Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest. Ophthalmol 1/is. Sci. (2003) 44:2909–2918.
  • KAWAZU K, YAMADA K, NAKAMURA M et al.: Characterization of cyclosporin A transport in cultured rabbit corneal epithelial cells: P-glycoprotein transport activity and binding to cyclophilin. Invest. Ophthalmol 1/is. Sci. (1999) 40:1738–1744.
  • YANG JJ, KIM KJ, LEE VH: Role of P-glycoprotein in restricting propranolol transport in cultured rabbit conjunctival epithelial cell layers. Pharm. Res. (2000) 17:533–538.
  • SAHA P, YANG JJ, LEE VH: Existence of a P-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest. Ophthalmol 1/is. Sci. (1998) 39:1221–1226.
  • •The first published report of P-gp expression and activity in the conjunctival epithelium.
  • GREENWOOD J: Characterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro. J.Neuroimmunol. (1992) 39:123–132.
  • KENNEDY BG, MANGINI NJ: P-glycoprotein expression in human retinal pigment epithelium. Mo/ 1/is. (2002) 8:422–430.
  • AUKUNURU JV, SUNKARA G, BANDI N et al.: Expression of multi-drug resistance-associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm. Res. (2001) 18:565–572.
  • LIN JH, LU AY: Inhibition and inductionof cytochrome P450 and the clinical implications. Clin. Pharmacokinet. (1998) 35:361–390.
  • SACHSE C, BROCKMOLLER J, BAUER S et al.: Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am. J. Hum. Genet. (1997) 60:284–295.
  • PHILLIPS KA, VEENSTRA DL, OREN E et al.: Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA (2001) 286:2270–2279.
  • LIN JH, LU AY: Role of pharmacokineticsand metabolism in drug discovery and development. Pharmacol Rev. (1997) 49:403–449.
  • EDEKI TI, HE H, WOOD AJ: Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops. Potential for oral-ophthalmic drug interaction. JAMA (1995) 274:1611–1613.
  • ISHII Y, NAKAMURA K, TSUTSUMI K et al.: Drug interaction between cimetidine and timolol ophthalmic solution: effect on heart rate and intraocular pressure in healthy Japanese volunteers. J. Clin. Pharmacol. (2000) 40:193–199.
  • NOVACK GD: Excessive B-blockade withtimolol eye drops. JAMA (1996) 275:985.
  • PUTTERMAN GJ, DAVIDSON J, ALBERT J: Lack of metabolism of timolol by ocular tissues. J. Or& Pharmacol (1985) 1:287–296.
  • PAI HV, KOMMADDI RP, CHINTA SJ et al.: A frameshift mutation and alternate splicing in human brain generate a functional form of the pseudogene cytochrome P4502D7 that demethylates codeine to morphine. Biol. Chem. (2004) 279:27383–27389.
  • SEKINE Y, HOMMURA S, HARADA S: Frequency of glutathione-Stransferase 1 gene deletion and its possible correlation with cataract formation. Exp. Eye Res. (1995) 60:159–163.
  • JURONEN E, TASA G, VEROMANN S et al.: Polymorphic glutathione ..Ctransferases as genetic risk factors for senile cortical cataract in Estonians. Invest. Ophthalmol 1/is. Sci. (2000) 41:2262–2267.
  • SCOTT IU, FLYNN HW MILLER Det al: Exogenous endophthalmitis caused by amphotericin B-resistant Paecilomyces lilacinus: treatment options and visual outcomes. Arch. Ophthalmol (2001) 119:916–919.
  • THOMAS PA: Fungal infections of the cornea. Eye (2003) 17:852–862.
  • ARTHUR RR, DREW RH, PERFECT JR: Novel modes of antifungal drug administration. Expert Opin. Investig. Drugs (2004) 13:903–932.
  • TOLER SM: Oxidative stress plays an important role in the pathogenesis of drug-induced retinopathy. Exp. Biol. Med.(Maywood) (2004) 229:607–615.
  • SHICHI H, ATLAS SA, NEBERT DW: Genetically regulated aryl hydrocarbon hydroxylase induction in the eye: possible significance of the drug-metabolizing enzyme system for the retinal pigmented epithelium-choroid. Exp. Eye Res. (1975) 21:557–567.
  • MADHU C, DINH V, BABUSIS D et al:Cytochrome P450 isozyme activities in rabbit ocular tissues. Thirteenth annual meeting of the International Society for the Study of Xenobiotics Proceedings, Cairns, Australia (1998).
  • MADAN A, GRAHAM RA, CARROLL KM et al.: Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab. Dispos. (2003) 31:421–431.
  • MATSUMOTO K, KISHIDA K, MANABE R et al.: Induction of cytochrome P450 in the rabbit eye by phenobarbital, as detected immunohistochemically. Curr. Eye Res. (1987) 6:847–854.
  • TANAKA H, HIRAYAMA I, TAKEHANA M et al.: Cytochrome P450 expression in rat ocular tissues and its induction by phenobarbital. I. Health Li. (2002) 48:346–349.
  • NELSON KC, ARMSTRONG JS, MORIARTY S et al.: Protection of retinal pigment epithelial cells from oxidative damage by oltipraz, a cancer chemopreventive agent. Invest. Ophthalmol 1/is. Li. (2002) 43:3550–3554.
  • WEI CP, ANDERSON JA, LEOPOLD I: Ocular absorption and metabolism of topically applied adrenaline and a dipivalyl ester of adrenaline. Invest. Ophthalmol 1/is. Li. (1978) 17:315–321.
  • SJOQUIST B, STJERNSCHANTZ J: Ocular and systemic pharmacokinetics of latanoprost in humans. Surv. Ophthalmol (2002) 47 (Suppl. 1):56–512.
  • DRUZGALA P, WU WM, BODOR N: Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr. Eye Res. (1991) 10:933–937.
  • KASS M, CHEETHAM J, DUZMAN E et al.: The ocular hypertensive effect of 0.25% fluorometholone in corticosteroid responders. Am. J. Ophthalmol (1986) 102:159–163.
  • HAGENBUCH B, MEIER PJ: The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta (2003) 1609:1–18.
  • WOLDEMUSSIE E, RUIZ G, WIJONO M et al.: Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest. Ophthalmol 1/is. (2001) 42:2849–2855.
  • YOSHIDA S, HONDA M, YOSHIDA A et al.: Novel mutation in ABCC6 gene in a Japanese pedigree with pseudoxanthoma elasticum and retinitis pigmentosa. Eye (2005) 19:215–217.
  • RINGPFEIL F, LEBWOHL MG, CHRISTIANO AM et al: Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc. Nati Acad. Sci.USA (2000) 97:6001–6006.
  • SHICHI H, GAASTERLAND DE, JENSEN NM et al.: Ah locus: genetic differences in susceptibility to cataracts induced by acetaminophen. Science (1978) 200:539–541.
  • ZHAO C, SHICHI H: Prevention of acetaminophen-induced cataract by a combination of diallyl disulfide and Nacetylcysteine.Pharmacol Ther.(1998) 14:345–355.
  • AMIN RH, SHICHI H: Cytotoxic metabolite of acetaminophen, Nacetyl-p-benzoquinone imine, produces cataract in DBA2 mice. J. Ocul. Pharmacol Ther. (1999) 15:537–545.
  • GERSON RJ, MACDONALD JS, ALBERTS AW et al.: On the aetiology of subcapsular lenticular opacities produced in dogs receiving HMG-CoA reductase inhibitors. Exp. Eye Res. (1990) 50:65–78.
  • RAO PV, ROBISON WG BETTELHEIM F et al: Role of small GTP-binding proteins in lovastatin-induced cataracts. Invest. Ophthalmol. Vis. Sci. (1997) 38:2313–2321.
  • SMEETH L, HUBBARD R, FLETCHER AE: Cataract and the use of statins: a case-control study. QJM(2003) 96: 337–343.
  • BOCCUZZI SJ, BOCANEGRA TS, WALKER JF et al.: Long-term safety and efficacy profile of simvastatin. Am. J. Cardiol (1991) 68:1127–1131.
  • HARRIS ML, BRON AJ, BROWN NA et al.: Absence of effect of simvastatin on the progression of lens opacities in a randomised placebo-controlled study. Oxford Cholesterol Study Group. BE J. Ophthalmol (1995) 79:996–1002.
  • EINARSON TR, METGE CJ, ISKEDJIAN M et al.: An examination of the effect of cytochrome P450 drug interactions of hydroxymethylglutaryl-coenzyme A reductase inhibitors on healthcare utilization: a Canadian population-based study. Chit Ther. (2002) 24:2126–2136.
  • PATTON WP, ROUTLEDGE MN, JONES GD et al.: Retinal pigment epithelial cell DNA is damaged by exposure to benzo [alpyrene, a constituent of cigarette smoke. Exp. Eye Res. (2002) 74:513–522.
  • ZHANG Y, WU X, GUO D et al: Two-step error-prone bypass of the (÷)- and (-)-trans-anti-BPDE-N2-dG adducts by human DNA polymerases eta and kappa. Mutat Res. (2002) 510:23–35.
  • SARDESAI VM: Molybdenum: an essential trace element. Nutt Clin. Pract. (1993) 8:277–281.
  • PARINI R, BRISCIOLI V, CARUSO U et al.: Spherophakia associated with molybdenum cofactor deficiency. Am. J. Med. Genet. (1997) 73:272–275.
  • LIBBY RT, SMITH RS, SAVINOVA OV et al.: Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science (2003) 299:1578–1581.
  • ••This paper elucidates the underlyingmechanism that links mutation in CYP 1B1 and the development of primary congenital glaucoma. Through understanding the roles played by metabolic enzymes in ocular tissues, mote effective drug therapy may be developed.
  • ALWARD WL: Biomedicine. A new angle on ocular development. Science (2003) 299:1527–1528.
  • SCHWARTZMAN ML, MASFERRER J, DUNN MW et al.: Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues. Curt Eye Res. (1987) 6:623–630.
  • SCHWARTZMAN ML, DAVIS KL, NISHIMURA M et al.: The cytochrome P450 metabolic pathway of arachidonic acid in the cornea. Adv. Prostaglandin Thromboxane Leukot. Res. (1991) 21A:185–192.
  • ABRAHAM NG, LIN JH, DUNN MW et al.: Presence of haem oxygenase and NADPH cytochrome P450 (c) reductase in human corneal epithelium. Invest. Ophthalmol Vis. Sci. (1987) 28:1464–1472.
  • SCHWARTZMAN ML, BALAZY M, MASFERRER J et al.: 12 a9-hydroxyicosatetraenoic acid: a cytochrome-P450-dependent arachidonate metabolite that inhibits Nat,K*-ATPase in the cornea. Proc. Natl. Acad. Sci.USA (1987) 84:8125–8129.
  • MURPHY RC, FALCK JR, LUMIN S et al.: 12 (A)-hydroxyeicosatrienoic acid: a vasodilator cytochrome P450-dependent arachidonate metabolite from the bovine corneal epithelium. J. Biol. Chem. (1988) 263:17197–17202.
  • MIEYAL PA, DUNN MW, SCHWARTZMAN ML: Detection of endogenous 12-hydroxyeicosatrienoic acid in human tear film. Invest. Ophthalmol Vis. Sci. (2001) 42:328–332.
  • •Metabolic products from local ocular metabolism can be measured in tears, which may serve as important biomarkers to monitor disease progression and treatment.
  • DAVIS KL, CONNERS MS, DUNN MW et al: Induction of corneal epithelial cytochrome P450 arachidonate metabolism by contact lens wear. Invest. Ophthalmol. Vis. Sci. (1992) 33:291–297.
  • VAFEAS C, MIEYAL PA, URBANO F et al.: Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. Pharmacol Exp. Ther. (1998) 287:903–910.
  • ASHKAR S, MESENTSEV A, ZHANG WX et al: Retinoic acid induces corneal epithelial CYP4B1 gene expression and stimulates the synthesis of inflammatory 12-hydroxyeicosanoids. J. Ocul. Pharmacol Ther. (2004) 20:65–74.
  • BENET LZ, CUMMINS CL, WU CY: Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int. J. Pharm. (2004) 277:3–9.
  • GEORGE RL, HUANG W, NAGGAR HA et al.: Transport of N-acetylaspartate via murine sodium/ dicarboxylate cotransporter NaDC3 and expression of this transporter and aspartoacylase II in ocular tissues in mouse. Biochim. Biophys. Acta (2004) 1690:63–69.
  • WANG EJ, CASCIANO CN, CLEMENT RP et al: Cooperativity in the inhibition of P-glycoprotein-mediated daunorubicin transport: evidence for half-of-the-sites reactivity. Arch. Biochem. Biophys. (2000) 383:91–98.
  • DAMM J, RAU T, MAIHOFNER C et al.: Constitutive expression and localization of COX-1 and COX-2 in rabbit iris and ciliary body. Exp. Eye Res. (2001) 72:611–621.
  • KULKARNI PS, SRINIVASAN BD: Cyclooxygenase and lipoxygenase pathways in anterior uvea and conjunctiva. Prog. Biol. Res. (1989) 312:39–52.
  • WALTMAN A, SEARS M: Catechol-0-methyl transferase and monoamine oxidase activity in the ocular tissues of albino rabbits. Invest. Ophthalmol (1964) 3:601.
  • STRATFORD RE LEE VH: Ocular aminopeptidase activity and distribution in the albino rabbit. Curl: Eye Res. (1985) 4:995–999.
  • STRATFORD RE LEE VH: Aminopeptidase activity in albino rabbit extraocular tissues relative to the small intestine. J. Pharm. Sci. (1985) 74: 731–734.
  • AZZAROLO AM, BJERRUM K, MAVES CA et al: Hypophysectomy-induced regression of female rat lacrimal glands: partial restoration and maintenance by dihydrotestosterone and prolactin. Invest. Ophthalmol. 1/is. Sci. (1995) 36:216–226.
  • MIRCHEFF AK, MILLER SS, FARBER DB et al.: Isolation and provisional identification of plasma membrane populations from cultured human retinal pigment epithelium. Invest. Ophthalmol. 1/is. Sci. (1990) 31:863–878.
  • LI DW- XIANG H, FASS U et al: Analysis of expression patterns of protein phosphatase-1 and phosphatase-2A in rat and bovine lenses. Invest. Ophthalmol. 1/is. ScL (2001) 42:2603–2609.
  • FEENEY L: Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest. Ophthalmol. 1/is. ScL (1978) 17:583–600.
  • CABRAL L, UNGER W, BOULTON M et al.: Regional distribution of lysosomal enzymes in the canine retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. (1990) 31:670–676.
  • HAYASAKA S, SEARS ML: Distribution of acid phosphatase, beta-glucuronidase, and lysosomal hyaluronidase in the anterior segment of the rabbit eye. Invest. Ophthalmol. 1/is. Sci. (1978) 17:982–987.
  • ROBERTSON MJ, ERWIG LP, LIVERSIDGE J et al.: Retinal microenvironment controls resident and infiltrating macrophage function during uveoretinitis. Invest. Ophthalmol. 1/is. Sci. (2002) 43:2250–2257.
  • IKEDA H, UEDA M, IKEDA M et al: Oxysterol ialpha-hydroxylase (CYP39A1) in the ciliary nonpigmented epithelium of bovine eye. Lab. Invest. (2003) 83:349–355.
  • JAIN-VAKKALAGADDA B, DEY S, PAL D et al.: Identification and functional characterization of a Na'-independent large neutral amino acid transporter, LAT1, in human and rabbit cornea. Invest. Ophthalmol. 1/is. Li. (2003) 44:2919–2927.
  • MAENPAA H, GEGELASHVILI G, TAHTI H: Expression of glutamate transporter subtypes in cultured retinal pigment epithelial and retinoblastoma cells. Curr. Eye Res. (2004) 28:159–165.
  • ANAND BS, MITRA AK: Mechanism of corneal permeation of 1-valy1 ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharin. Res. (2002) 19:1194–1202.
  • BASU SK, HAWORTH IS, BOLGER MB et al: Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells. Invest. Ophthalmol. 1/is. Li. (1998) 39:2365–2373.
  • BERGER UV, HEDIGER MA: Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat. Embryo]. (Berlin) (1999) 199:439–449.
  • BILDIN VN, ISEROVICH P, FISCHBARG J et al.: Differential expression of Na:K:2C1 cotransporter, glucose transporter 1, and aquaporin 1 in freshly isolated and cultured bovine corneal tissues. Exp. Biol. Med. (2001) 226:919–926.
  • GHERZI R, MELIOLI G, DE LUCA M et al.: High expression levels of the `erythroiclibrain' type glucose transporter (GLUT1) in the basal cells of human eye conjunctiva and oral mucosa reconstituted in culture. Exp. Cell Res. (1991) 195:230–236.
  • TAKATA K, KASAHARA T, KASAHARA M et al: Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest. Ophthalmol. 1/is. ScL (1992) 33:377–383.
  • TAKATA K, KASAHARA T, KASAHARA M et al: Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in the ciliary body and iris of the rat eye. Invest. Ophthalmol. 1/is. ScL (1991) 32:1659–1666.
  • PHILP NJ, WANG D, YOON H et al: Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells. Invest. Ophthalmol. 1/is. ScL (2003) 44:1716–1721.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.