1,443
Views
252
CrossRef citations to date
0
Altmetric
Reviews

Cell-mediated drug delivery

, &
Pages 415-433 | Published online: 24 Feb 2011

Bibliography

  • Fujiwara M, Baldeschwieler JD, Grubbs RH. Receptor-mediated endocytosis of poly(acrylic acid)-conjugated liposomes by macrophages. Biochim Biophys Acta 1996;1278(1):59-67
  • Torchilin VP. Drug targeting. Eur J Pharm Sci 2000;11(Suppl 2):S81-91
  • Mora M, Sagrista ML, Trombetta D, Design and characterization of liposomes containing long-chain N-acylPEs for brain delivery: penetration of liposomes incorporating GM1 into the rat brain. Pharm Res 2002;19(10):1430-8
  • Aoki H, Kakinuma K, Morita K, Therapeutic efficacy of targeting chemotherapy using local hyperthermia and thermosensitive liposome: evaluation of drug distribution in a rat glioma model. Int J Hyperthermia 2004;20(6):595-605
  • Kabanov AV, Chekhonin VP, Alakhov V, The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 1989;258(2):343-5
  • Kabanov AV, Vinogradov SV, Suzdaltseva YG, Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug Chem 1995;6(6):639-43
  • Kabanov A, Alakhov V. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst 2002;19(1):1-72
  • Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003;20(5):357-403
  • Vinogradov S, Batrakova E, Kabanov A. Poly(ethylene glycol)-polyethyleneimine NanoGel (TM) particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf B Biointerfaces 1999;16(1-4):291-304
  • Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 2004;15(1):50-60
  • Gref R, Minamitake Y, Peracchia M, Biodegradable long-circulating polymeric nanospheres. Science 1994;263(5153):1600-3
  • Hyuk IS, Jeong U, Xia Y. Polymer hollow particles with controllable holes in their surfaces. Nat Mater 2005;4(9):671-5
  • Calvo P, Gouritin B, Chacun H, Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 2001;18(8):1157-66
  • Nowacek AS, Miller RL, McMillan J, NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomed 2009;4(8):903-17
  • Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47(1):3-19
  • Friedrich I, Reichl S, Muller-Goymann CC. Drug release and permeation studies of nanosuspensions based on solidified reverse micellar solutions (SRMS). Int J Pharm 2005;305(1-2):167-75
  • Harada A, Kataoka K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999;283(5398):65-7
  • Jaturanpinyo M, Harada A, Yuan X, Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjug Chem 2004;15(2):344-8
  • Bull SR, Guler MO, Bras RE, Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Lett 2005;5(1):1-4
  • Guler MO, Pokorski JK, Appella DH, Enhanced oligonucleotide binding to self-assembled nanofibers. Bioconjug Chem 2005;16(3):501-3
  • Juliano R, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 1975;63:651-8
  • Lee KD, Hong K, Papahadjopoulos D. Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta 1992;1103(2):185-97
  • Nishikawa K, Arai H, Inoue K. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J Biol Chem 1990;265(9):5226-31
  • Miller CR, Bondurant B, McLean SD, Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 1998;37(37):12875-83
  • Ishihara T, Izumo N, Higaki M, Role of zinc in formulation of PLGA/PLA nanoparticles encapsulating betamethasone phosphate and its release profile. J Control Release 2005;105(1-2):68-76
  • Tempone AG, Perez D, Rath S, Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. J Antimicrob Chemother 2004;54(1):60-8
  • Krieger M. Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor. Trends Biochem Sci 1992;17(4):141-6
  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999;17:593-623
  • Zhao Y, Haney MJ, Klyachko NL, Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles. Nanomedicine (Lond) 2011;6(1):25-42
  • Harada A, Kataoka K. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers. J Control Release 2001;72(1-3):85-91
  • Harada A, Kataoka K. Switching by pulse electric field of the elevated enzymatic reaction in the core of polyion complex micelles. J Am Chem Soc 2003;125(50):15306-7
  • Knop K, Hoogenboom R, Fischer D, Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010;49(36):6288-308
  • Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 2003;42(5):419-36
  • Papaldo P, Fabi A, Ferretti G, A phase II study on metastatic breast cancer patients treated with weekly vinorelbine with or without trastuzumab according to HER2 expression: changing the natural history of HER2-positive disease. Ann Oncol 2006;17(4):630-6
  • Gbadamosi JK, Hunter AC, Moghimi SM. PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett 2002;532(3):338-44
  • Daleke DL, Hong K, Papahadjopoulos D. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim Biophys Acta 1990;1024(2):352-66
  • Jain S, Mishra V, Singh P, RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm 2003;261(1-2):43-55
  • Thiele L, Merkle HP, Walter E. Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res 2003;20(2):221-8
  • Fahmy TM, Schneck JP, Saltzman WM. A nanoscopic multivalent antigen-presenting carrier for sensitive detection and drug delivery to T cells. Nanomedicine 2007;3(1):75-85
  • Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 1988;9(4):356-62
  • Mizushima Y, Hamano T, Yokoyama K. Tissue distribution and anti-inflammatory activity of corticosteroids incorporated in lipid emulsion. Ann Rheum Dis 1982;41(3):263-7
  • Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009;66(17):2873-96
  • Cannon GJ, Swanson JA. The macrophage capacity for phagocytosis. J Cell Sci 1992;101(Pt 4):907-13
  • Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007;104(29):11901-4
  • Behr J-P. The proton sponge: a trick to enter cells the viruses did not exploit CHIMIA. Int J Chem 1997;51(1):34-6
  • Cheng H, Kastrup CJ, Ramanathan R, Nanoparticulate cellular patches for cell-mediated tumoritropic delivery. ACS Nano 2010;4(2):625-31
  • Krantz A. Red cell-mediated therapy: opportunities and challenges. Blood Cells Mol Dis 1997;23(1):58-68
  • Batrakova EV, Li S, Reynolds AD, A macrophage-nanozyme delivery system for Parkinson's disease. Bioconjug Chem 2007;18(5):1498-506
  • Sollner T, Bennett MK, Whiteheart SW, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993;75(3):409-18
  • Ikehara Y, Niwa T, Biao L, A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res 2006;66(17):8740-8
  • Perry VH, Bell MD, Brown HC, Inflammation in the nervous system. Curr Opin Neurobiol 1995;5(5):636-41
  • Kuby J. Immunology. Freeman, WH. and Co., New York; 1994
  • Anthony DC, Bolton SJ, Fearn S, Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats. Brain 1997;120(Pt 3):435-44
  • Anthony DC, Blond D, Dempster R, Chemokine targets in acute brain injury and disease. Prog Brain Res 2001;132:507-24
  • Blamire AM, Anthony DC, Rajagopalan B, Interleukin-1beta-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 2000;20(21):8153-9
  • Persidsky Y, Ghorpade A, Rasmussen J, Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 1999;155(5):1599-611
  • Dou H, Destache CJ, Morehead JR, Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 2006;108(8):2827-35
  • Pawlowski NA, Kaplan G, Abraham E, The selective binding and transmigration of monocytes through the junctional complexes of human endothelium. J Exp Med 1988;168(5):1865-82
  • Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions [review]. Histol Histopathol 2004;19(2):535-64
  • Orlic D, Kajstura J, Chimenti S, Bone marrow cells regenerate infarcted myocardium. Nature 2001;410(6829):701-5
  • Orlic D, Kajstura J, Chimenti S, Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98(18):10344-9
  • Hofstetter CP, Schwarz EJ, Hess D, Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002;99(4):2199-204
  • Mahmood A, Lu D, Lu M, Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 2003;53(3):697-702, discussion-3
  • Martinez-Serrano A, Hantzopoulos PA, Bjorklund A. Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain: neurotrophic effects on cholinergic neurons. Eur J Neurosci 1996;8(4):727-35
  • Martinez-Serrano A, Bjorklund A. Ex vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging. Proc Natl Acad Sci USA 1998;95(4):1858-63
  • Muller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 2006;7(1):75-84
  • Leek RD, Lewis CE, Whitehouse R, Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996;56(20):4625-9
  • Lewis JS, Landers RJ, Underwood JC, Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 2000;192(2):150-8
  • Ranney DF, Huffaker HH. Magnetic microspheres for the targeted controlled release of drugs and diagnostic agents. Ann NY Acad Sci 1987;507:104-19
  • Hendriks JJ, Teunissen CE, de Vries HE, Macrophages and neurodegeneration. Brain Res Brain Res Rev 2005;48(2):185-95
  • Brynskikh AM, Zhao Y, Mosley RL, Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine (Lond) 2010;5(3):379-96
  • Low WC, Lewis PR, Bunch ST, Function recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions. Nature 1982;300(5889):260-2
  • Garcia P, Youssef I, Utvik JK, Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer's disease. J Neurosci 2010;30(22):7516-27
  • Pizzo DP, Coufal NG, Lortie MJ, Regulatable acetylcholine-producing fibroblasts enhance cognitive performance. Mol Ther 2006;13(1):175-82
  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 2009;106(32):13594-9
  • Zurn AD, Tseng J, Aebischer P. Treatment of Parkinson's disease. Symptomatic cell therapies: cells as biological minipumps. Eur Neurol 1996;36(6):405-8
  • Akerud P, Canals JM, Snyder EY, Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease. J Neurosci 2001;21(20):8108-18
  • Casper D, Engstrom SJ, Mirchandani GR, Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer. Cell Transplant 2002;11(4):331-49
  • Yasuhara T, Shingo T, Muraoka K, Neurorescue effects of VEGF on a rat model of Parkinson's disease. Brain Res 2005;1053(1-2):10-8
  • Biju K, Zhou Q, Li G, Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson's disease. Mol Ther 2010;18(8):1536-44
  • Dou H, Morehead JR, Destache C, Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human nomocyte-derived macrophages. Virology 2007;358(1):148-58
  • Dou H, Grotepas CB, McMillan JM, Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 2009;183(1):661-9
  • Nowacek AS, McMillan J, Miller R, Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics. J Neuroimmune Pharmacol 2010;5(4):592-601
  • Duzgunes N, Pretzer E, Simoes S, Liposome-mediated delivery of antiviral agents to human immunodeficiency virus-infected cells. Mol Membr Biol 1999;16(1):111-18
  • Chokri M, Lopez M, Oleron C, Production of human macrophages with potent antitumor properties (MAK) by culture of monocytes in the presence of GM-CSF and 1,25-dihydroxy vitamin D3. Anticancer Res 1992;12(6B):2257-60
  • Studeny M, Marini FC, Champlin RE, Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62(13):3603-8
  • Stagg J, Lejeune L, Paquin A, Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 2004;15(6):597-608
  • Nakamura K, Ito Y, Kawano Y, Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004;11(14):1155-64
  • Choi MR, Stanton-Maxey KJ, Stanley JK, A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 2007;7(12):3759-65
  • Studeny M, Marini FC, Dembinski JL, Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96(21):1593-603
  • Stoff-Khalili MA, Rivera AA, Mathis JM, Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007;105(2):157-67
  • Sonabend AM, Ulasov IV, Tyler MA, Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008;26(3):831-41
  • Menon LG, Kelly K, Yang HW, Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 2009;27(9):2320-30
  • Steinfeld U, Pauli C, Kaltz N, T lymphocytes as potential therapeutic drug carrier for cancer treatment. Int J Pharm 2006;311(1-2):229-36
  • Nakamizo A, Marini F, Amano T, Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65(8):3307-18
  • Wang GP, Guan YS, Jin XR, Development of novel 5-fluorouracil carrier erythrocyte with pharmacokinetics and potent antitumor activity in mice bearing malignant ascites. J Gastroenterol Hepatol 2010;25(5):985-90
  • MacDiarmid JA, Mugridge NB, Weiss JC, Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 2007;11(5):431-45
  • MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 2009;27(7):643-51
  • Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996;178(20):5853-9
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003;67(4):593-656
  • Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol 2002;3(2):77-98
  • Dubrot J, Portero A, Orive G, Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 2010;59(11):1621-31
  • Popescu MA, Toms SA. In vivo optical imaging using quantum dots for the management of brain tumors. Expert Rev Mol Diagn 2006;6(6):879-90
  • Zarabi B, Nan A, Zhuo J, Macrophage targeted N-(2-hydroxypropyl)methacrylamide conjugates for magnetic resonance imaging. Mol Pharm 2006;3(5):550-7
  • Kumar A, El-Badri N, Glaum M, Initial observations of cell mediated drug delivery to the deep lung. Cell Transplant 5 Nov 2010 [Epub ahead of print]
  • Staedtke V, Brahler M, Muller A, In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Small 2010;6(1):96-103
  • Khan MA, Jabeen R, Nasti TH, Enhanced anticryptococcal activity of chloroquine in phosphatidylserine-containing liposomes in a murine model. J Antimicrob Chemother 2005;55(2):223-8
  • Boison D. Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics 2009;6(2):278-83
  • Boison D. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 2009;85(2-3):131-41
  • Kabanov AV, Batrakova EV. Polymer nanomaterials. In: Gendelman HE, Ikezu T, editors, Neuroimmune pharmacology. Springer, Omaha; 2008. p. 691-707
  • Nowacek A, Gendelman HE. NanoART, neuroAIDS and CNS drug delivery. Nanomedicine 2009;4(5):557-74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.