431
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Drug delivery in soft tissue engineering

Pages 1175-1188 | Published online: 16 Jun 2011

Bibliography

  • Langer R, Vacanti J. Tissue engineering. Science 1993;260(5110):920-6
  • Langer R. Tissue engineering. Mol Ther 2000;1(1):12-15
  • Altomare L, Fare S. Cells response to topographic and chemical micropatterns. J Appl Biomater Biomech 2008;6(3):132-43
  • Cortese B, Gigli G, Riehle M. Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates. Adv Funct Mater 2009;19(18):2961-8
  • Cosgrove BD, Griffith LG, Lauffenburger DA. Fusing tissue engineering and systems biology toward fulfilling their promise. Cell Mol Bioeng 2008;1(1):33-41
  • Galler KM, D'souza RN, Hartgerink JD. Biomaterials and their potential applications for dental tissue engineering. J Mater Chem 2010;20(40):8730-46
  • Hajicharalambous CS, Lichter J, Hix WT, Nano- and sub-micron porous polyelectrolyte multilayer assemblies: biomimetic surfaces for human corneal epithelial cells. Biomaterials 2009;30(23-24):4029-36
  • Hoffmann JC, West JL. Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft Matter 2010;6(20):5056-63
  • Kim DH, Seo CH, Han K, Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv Funct Mater 2009;19(10):1579-86
  • Leach JB, Brown XQ, Jacot JG, Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng 2007;4(2):26-34
  • Li XR, MacEwan MR. Xie JW, et al. fabrication of density gradients of biodegradable polymer microparticles and their use in guiding neurite outgrowth. Adv Funct Mater 2010;20(10):1632-7
  • Mirakaj V, Brown S, Laucher S, Repulsive guidance molecule-A (RGM-A) inhibits leukocyte migration and mitigates inflammation. Proc Natl Acad Sci USA 2011;108(16):6555-60
  • Sant S, Hancock MJ, Donnelly JP, Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 2010;88(6):899-911
  • Tate MC, Shear DA, Hoffman SW, Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant 2002;11(3):283-95
  • Thibault MM, Hoemann CD, Buschmann MD. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev 2007;16(3):489-502
  • Yang F, Cho SW. Son SM, et al. combinatorial extracellular matrices for human embryonic stem cell differentiation in 3D. Biomacromolecules 2010;11(8):1909-14
  • Vashi AV, Keramidaris E, Abberton KM, Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials 2007;29(5):573-9
  • Vashi AV, Abberton KM, Thomas GP, Adipose tissue engineering based on the controlled release of fibroblast growth factor-2 in a collagen matrix. Tissue Eng 2006;12(11):3035-43
  • Reddi AH. Growth factors and morphogens: signals for tissue engineering, In: Tissue Engineering, Fischer JP, Mikos AG, Bronzino JD. (Eds.), 2007, CRC Press, Boca Raton, USA, p. 2-1–2-5
  • Ahmed TAE, Giulivi A, Griffith M, Fibrin glues in combination with mesenchymal stem cells to develop a tissue-engineered cartilage substitute. Tissue Eng 2011;17(3-4):323-35
  • Wheeldon I, Farhadi A, Bick AG, Nanoscale tissue engineering: spatial control over cell-materials interactions. Nanotechnology 2011;22:21; doi: 10.1088/0957-4484/22/21/212001
  • Ito A, Mase A, Takizawa Y, Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. J Biosci Bioeng 2003;95(2):196-9
  • Jurga M, Dainiak MB, Sarnowska A, The performance of laminin-containing cryogel scaffolds in neural tissue regeneration. Biomaterials 2011;32(13):3423-34
  • Munarin F, Guerreiro SG, Grellier MA, Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 2011;12(3):568-77
  • Fittkau MH, Zilla P, Bezuidenhout D, The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials 2005;26(2):167-74
  • Feng Y, Zhao H, Zhang L, Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Front Chem Eng China 2010;4(3):372-81
  • Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2010;7(43):209-27
  • Stayton PS, El-Sayed MEH, Murthy N, 'Smart' delivery systems for biomolecular therapeutics. Orthod Craniofac Res 2005;8(3):219-25
  • Plank C, Scherer F, Rudolph C. Localized nucleic acid delivery: a discussion of selected methods. In: Schleef M, editor. DNA-Pharmaceuticals. Wiley-VCH Verlag GmbH & Co. KGaA; 2006. p. 55-116
  • Shea L, Smiley E, Bonadio J, DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 1999;17(6):551-4
  • Van Blitterswijk CA. Tissue engineering. amsterdam. Elsevier/Academic Press; London: 2008
  • Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 2010;7(4):429-44
  • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues. State of the art and future perspectives. J Biomater Sci Polym Ed 2001;12(1):107-24
  • Duan B, Wang M. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 2010;7(Suppl 5):S615-29
  • Biondi M, Indolfi L, Ungaro F, Bioactivated collagen-based scaffolds embedding protein-releasing biodegradable microspheres: tuning of protein release kinetics. J Mater Sci Mater Med 2009;20(10):2117-28
  • Biondi M, Ungaro F, Quaglia F, Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008;60(2):229-42
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101(7):1869-79
  • Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007;59(4-5):207-33
  • Sokolsky-Papkov M, Agashi K, Olaye A, Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007;59(4-5):187-206
  • Nillesen STM, Geutjes PJ, Wismans R, Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 2006;28(6):1123-31
  • Taylor SJ, McDonald JW III, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release 2004;98(2):281-94
  • Lee AC, Yu VM, Lowe JB, Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 2003;184(1):295-303
  • Wissink MJB, Beernink R, Pieper JS, Binding and release of basic fibroblast growth factor from heparinized collagen matrices. Biomaterials 2001;22(16):2291-9
  • Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 2000;65(3):389-402
  • Lee H, Park TG. Design principles in biomaterials and scaffolds. Found Regener Med 2010;312-25
  • Sellke FW, Laham RJ, Edelman ER, Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thorac Surg 1998;65(6):1540-4
  • Laham RJ, Sellke FW, Edelman ER, Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999;100(18):1865-71
  • Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 2011;8(55):153-70
  • Jeon O, Song SJ, Kang S-W, Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials 2007;28(17):2763-71
  • Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta1 increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 2001;22(5):439-44
  • Kuhl PR, Griffith-Cima LG. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 1996;2(9):1022-7
  • Zisch AH, Lutolf MP, Ehrbar M, Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J 2003;17(15):2260-2
  • Moore K, Macsween M, Shoichet M. Immobilized concentration gradients of neurotrophic factors guide neuriteo outgrowth of primary neurons in macroporous scaffolds. Tissue Eng 2006;12(2):267-78
  • Thomasin C, Corradin G, Men Y, Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres: importance of polymer degradation and antigen release for immune response. J Control Release 1996;41(1-2):131-45
  • Sanchez A, Gupta RK, Alonso MJ, Pulsed controlled-release system for potential use in vaccine delivery. J Pharm Sci 1996;85(6):547-52
  • Hilbert AK, Fritzsche U, Kissel T. Biodegradable microspheres containing influenza A vaccine: immune response in mice. Vaccine 1999;17(9-10):1065-73
  • Cleland JL, Barron L, Berman PW, Development of a single-shot subunit vaccine for HIV-1. 2. Defining optimal autoboost characteristics to maximize the humoral immune response. J Pharm Sci 1996;85(12):1346-9
  • Cleland JL, Duenas ET, Park A, Development of poly-(d,l-lactide-co-glycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 2001;72(1-3):13-24
  • Cleland JL, Lim A, Daugherty A, Development of a single-shot subunit vaccine for HIV-1 with programmable in vivo autoboost and long-lasting neutralizing response. J Pharm Sci 1998;87(12):1489-95
  • Rizzi SC, Ehrbar M, Halstenberg S, Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules 2006;7(11):3019-29
  • Van Tomme SR, Hennink WE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devices 2007;4(2):147-64
  • Franssen O, Stenekes RJH, Hennink WE. Controlled release of a model protein from enzymatically degrading dextran microspheres. J Control Release 1999;59(2):219-28
  • Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2001;46(1-3):125-48
  • Davis KA, Anseth KS. Controlled release from crosslinked degradable networks. Crit Rev Ther Drug Carrier Syst 2002;19(4 & 5):385-423
  • Liu X, Pettway GJ, McCauley LK, Pulsatile release of parathyroid hormone from an implantable delivery system. Biomaterials 2007;28(28):4124-31
  • Jain JP, Modi S, Domb AJ, Role of polyanhydrides as localized drug carriers. J Control Release 2005;103(3):541-63
  • Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev 2002;54(7):889-910
  • Tabata Y, Gutta S, Langer R. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm Res 1993;10(4):487-96
  • Torres MP, Determan AS, Anderson GL, Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials 2006;28(1):108-16
  • Grayson ACR, Choi IS, Tyler BM, Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2003;2(11):767-72
  • Peppas NA, Bures P, Leobandung W, Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000;50(1):27-46
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002;7(10):569-79
  • Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 2002;54(1):79-98
  • Ishihara K, Kobayashi M, Ishimaru N, Glucose-induced permeation control of insulin through a complex membrane consisting of immobilized glucose oxidase and a polyamine. Polym J (Tokyo) 1984;16(8):625-31
  • Byrne ME, Salian V. Molecular imprinting within hydrogels II: progress and analysis of the field. Int J Pharm 2008;364(2):188-212
  • Prabaharan M, Tiwari A, Li S. Polysaccharides/poly(N-isopropylacrylamide)-based stimuli-responsive hydrogels as novel biomaterials. Smart Polym Mater Biomed Appl 2010;33-56
  • Kumari P, Tiwari A, Prabaharan M, Smart polymeric materials emerging for biological applications. Smart Polym Mater Biomed Appl 2010;103-18
  • Banerjee S, Chaurasia G, Ghosh A. Smart polymers: around the cosmos. Biochim Biophys Acta 2010;3(3):135-41
  • Kulkarni RV, Biswanath S. Electrically responsive smart hydrogels in drug delivery: a review. J Appl Biomater Biomech 2007;5(3):125-39
  • Hafeli UO. Magnetically modulated therapeutic systems. Int J Pharm 2004;277(1-2):19-24
  • Katz JS, Burdick JA. Light-responsive biomaterials: development and applications. Macromol Biosci 2010;10(4):339-48
  • Brayfield CA, Marra KG, Rubin JP. Adipose tissue regeneration. Curr Stem Cell Res Ther 2010;5(2):116-21
  • Choi JH, Gimble JM, Lee K, Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev 2010;16(4):413-26
  • Katz AJ, Llull R, Hedrick MH, Emerging approaches to the tissue engineering of fat. Clin Plast Surg 1999;26(4):587-603; viii
  • Patrick CW Jr. Tissue engineering strategies for adipose tissue repair. Anat Rec 2001;263(4):361-6
  • Stosich MS, Mao JJ. Adipose tissue engineering from human adult stem cells: clinical implications in plastic and reconstructive surgery. Plast Reconstr Surg 2006;119(1):71-83
  • Tanzi MC, Fare S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices 2009;6(5):533-51
  • Bauer-Kreisel P, Goepferich A, Blunk T. Cell-delivery therapeutics for adipose tissue regeneration. Adv Drug Deliv Rev 2010;62(7-8):798-813
  • Kawaguchi N, Toriyama K, Nicodemou-Lena E, De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci USA 1998;95(3):1062-6
  • Tabata Y, Miyao M, Inamoto T, De novo formation of adipose tissue by controlled release of basic fibroblast growth factor. Tissue Eng 2000;6(3):279-89
  • Kimura Y, Ozeki M, Inamoto T, Time course of de Novo adipogenesis in Matrigel by gelatin microspheres incorporating basic fibroblast growth factor. Tissue Eng 2002;8(4):603-13
  • Yuksel E, Weinfeld AB, Cleek R, De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microspheres in an in vivo rat model: a novel concept and capability. Plast Reconstr Surg 2000;105(5):1721-9
  • Yuksel E, Weinfeld AB, Cleek R, Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast Reconstr Surg 2000;105(5):1712-20
  • Masuda T, Furue M, Matsuda T. Photocured, Styrenated gelatin-based microspheres for de novo adipogenesis through corelease of basic fibroblast growth factor, insulin, and insulin-like growth factor I. Tissue Eng 2004;10(3/4):523-35
  • Kelly JL, Findlay MW, Knight KR, Contact with existing adipose tissue is inductive for adipogenesis in matrigel. Tissue Eng 2006;12(7):2041-7
  • Hemmrich K, Thomas GPL, Abberton KM, Monocyte chemoattractant protein-1 and nitric oxide promote adipogenesis in a model that mimics obesity. Obesity (Silver Spring) 2007;15(12):2951-7
  • Rophael JA, Craft RO, Palmer JA, Angiogenic growth factor synergism in aa murine tissue engineering model of angiogenesis and adipogenesis. Am J Pathol 2007;171(6):2048-57
  • Stillaert F, Findlay M, Palmer J, Host rather than graft origin of Matrigel-induced adipose tissue in the murine tissue-engineering chamber. Tissue Eng 2007;13(9):2291-300
  • Dolderer JH, Abberton KM, Thompson EW, Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space. Tissue Eng 2007;13(4):673-81
  • Abberton KM, Bortolotto SK, Woods AA, Myogel, a novel, basement membrane-rich, extracellular matrix derived from skeletal muscle, is highly adipogenic in vivo and in vitro. Cells Tissues Organs 2008;188(4):347-58
  • Thomas GPL, Hemmrich K, Abberton KM, Zymosan-induced inflammation stimulates neo-adipogenesis. Int J Obes 2008;32(2):239-48
  • Findlay MW, Messina A, Thompson EW, Long-term persistence of tissue-engineered adipose flaps in a murine model to 1 year: an update. Plast Reconstr Surg 2009;124(4):1077-84
  • Hamid ZAA, Blencowe A, Ozcelik B, Epoxy-amine synthesised hydrogel scaffolds for soft-tissue engineering. Biomaterials 2010;31(25):6454-67
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002;54(1):3-12
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24(24):4337-51
  • Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100(9):1249-60
  • Uriel S, Huang J-J, Moya ML, The role of adipose protein derived hydrogels in adipogenesis. Biomaterials 2008;29(27):3712-19
  • Zustiak SP, Leach JB. Hydrolytically degradable Poly(Ethylene Glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 2010;11(5):1348-57
  • Ladewig K, O'Connor AJ. Designing bioreactors for in vivo soft tissue engineering. Tissue Eng Biomater 2011; submitted
  • Chen RR, Silva EA, Yuen WW, Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 2007;24(2):258-64
  • Chen F-M, Zhang M, Wu Z-F. Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010;31(24):6279-308
  • Richardson TP, Peters MC, Ennett AB, Polymeric system for dual growth factor delivery. Nat Biotechnol 2001;19(11):1029-34
  • Wieland JA, Houchin-Ray TL, Shea LD. Non-viral vector delivery from poly(ethylene glycol)-hyaluronic acid hydrogels. J Control Release 2007;120(3):233-41
  • Huang Y-C, Kaigler D, Rice KG, Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res 2005;20(5):848-57
  • Lu Y, Shansky J, Del Tatto M, Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes localized angiogenesis. Circulation 2001;104(5):594-9
  • Tyrone JW, Mogford JE, Chandler LA, Collagen-embedded platelet-derived growth factor dna plasmid promotes wound healing in a dermal ulcer model. J Surg Res 2000;93(2):230-6
  • Ladewig K, Niebert M, Xu ZP, Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles. Appl Clay Sci 2010;48(1-2):280-9
  • Ladewig K, Niebert M, Xu ZP, Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2010;31(7):1821-9
  • Ladewig K, Xu ZP, Lu GQ. Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin Drug Deliv 2009;6(9):907-22
  • Cohen-Sacks H, Elazar V, Gao J, Delivery and expression of pDNA embedded in collagen matrices. J Control Release 2004;95(2):309-20
  • Lim HJ, Ghim HD, Choi JH, Controlled release of BMP-2 from alginate nanohydrogels enhanced osteogenic differentiation of human bone marrow stromal cells. Macromol Res 2010;18(8):787-92
  • Nakamura M, Iwanaga S, Henmi C, Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2010;2(1):014110/1-6
  • Song Q. Application of artificial biomaterials to tendon injury. Zhongguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu 2010;14(12):2233-6
  • Swetha M, Sahithi K, Moorthi A, Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2010;47(1):1-4
  • Dutta J, Dutta PK. Chitin and chitosan: the unique smart biomaterials for biomedical applications. Smart Polym Mater Biomed Appl 2010;307-35
  • Jayakumar R, Prabaharan M, Nair SV, Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 2010;55(7):675-709
  • Shi C, Zhu Y, Ran X, Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 2006;133(2):185-92
  • Lee JE, Kim SE, Kwon IC, Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Artif Organs 2004;28(9):829-39
  • Lutolf MP, Lauer-Fields JL, Schmoekel HG, Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 2003;100(9):5413-18
  • Ye Q, Zund G, Benedikt P, Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 2000;17(5):587-91
  • Yin M, Zhao Z, Zhang J. Construction of tissue-engineered blood vessel stent using different materials: characteristics and effectiveness. Zhongguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu 2010;14(16):2958-62
  • Mandal BB, Mann JK, Kundu SC. Silk fibroin/gelatin multilayered films as a model system for controlled drug release. Eur J Pharm Sci 2009;37(2):160-71
  • Bozzini S, Petrini P, Altomare L, Fabrication of chemically cross-linked porous gelatin matrices. J Appl Biomater Biomech 2009;7(3):194-9
  • Duflo S, Thibeault SL, Li W, Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng 2006;12(8):2171-80
  • Segura T, Anderson BC, Chung PH, Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 2005;26(4):359-71
  • Mandal A, Panigrahi S, Zhang C. Collagen as biomaterial for medical application-drug delivery and scaffolds for tissue regeneration: a review. Biol Eng 2010;2(2):63-88
  • Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials 2010;3:1863-87
  • Burgess BT, Myles JL, Dickinson RB. Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen. Ann Biomed Eng 2000;28(1):110-18
  • Pachence JM. Collagen-based devices for soft tissue repair. J Biomed Mater Res 1996;33(1):35-40
  • Shi X, Wang Y, Varshney RR, Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Eur J Pharm Sci 2010;39(1-3):59-67
  • Savarino L, Baldini N, Greco M, The performance of poly-(epsilon-caprolactone) scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 2007;28(20):3101-9
  • Ng KW, Hutmacher DW, Schantz J-T, Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng 2001;7(4):441-55
  • Grizzi I, Garreau H, Li S, Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials 1995;16(4):305-11
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47-55
  • Day RM, Boccaccini AR, Maquet V, In vivo characterization of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. J Mater Sci Mater Med 2004;15(6):729-34
  • Suciati T, Howard D, Barry J, Zonal release of proteins within tissue engineering scaffolds. J Mater Sci Mater Med 2006;17(11):1049-56
  • Holland TA, Tabata Y, Mikos AG. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 2005;101(1-3):111-25
  • Temenoff JS, Athanasiou KA, LeBaron RG, Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res 2002;59(3):429-37
  • Peter SJ, Lu L, Kim DJ, Effects of transforming growth factor beta-1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 2000;50(3):452-62
  • Gerhardt L-C, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 2010;3:3867-910
  • Alves NM, Leonor IB, Azevedo HS, Designing biomaterials based on biomineralization of bone. J Mater Chem 2010;20(15):2911-21
  • Wu C-J, Gaharwar AK, Schexnailder PJ, Development of biomedical polymer-silicate nanocomposites: a materials science perspective. Materials 2010;3:2986-3005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.