543
Views
57
CrossRef citations to date
0
Altmetric
Reviews

Polypeptides and polyaminoacids in drug delivery

, , , &
Pages 183-201 | Published online: 13 Jan 2012

Bibliography

  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;9(5):347-60
  • Kricheldorf HR. A-Aminoacid-N-Carboxyanhydrides and Related Materials. Springer; Berlin Heidelberg New York: 1987
  • Kricheldorf HR. Models of Biopolymers by Ring-Opening Polymerization. Boca Raton, FL: CRC Press Inc.1990
  • Hadjichristidis N, Iatrou H, Pitsikalis M, Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem Rev 2009;109(11):5528-78
  • Deming TJ. Polypeptide and polypeptide hybrid copolymers synthesis via NCA polimerization. Adv Polym Sci 2006;202:1-18
  • Kricheldorf HR. Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew Chem Int Ed 2006;45(35):5752-84
  • Cammas S, Kataoka K. Functional poly[(ethylene oxide)-co-(beta-benzyl-L-aspartate)] polymeric micelles: block copolymer synthesis and micelles formation. Macromol Chem Phys 1995;196(6):1899-905
  • Sekiguchi H. Mechanism of N-carboxy-alpha-amino acid anhydride (NCA) polymerization. Pure Appl Chem 1981;53(9):1689-714
  • Deming TJ. Facile synthesis of block copolypeptides of defined architecture. Nature 1997;390(6658):386-9
  • Aliferis T, Iatrou H, Hadjichristidis N. Living Polypeptides. Biomacromolecules 2004;5(5):1653-6
  • Vayaboury W, Giani O, Cottet H, Living polymerization of alpha-amino acid N-Carboxyanhydrides (NCA) upon decreasing the reaction temperature. Macromol Rapid Commun 2004;25(13):1221-4
  • Dimitrov I, Schlaad H. Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem Commun 2003;2944-5
  • Lu H, Cheng J. Hexamethyldisilazane-mediated controlled polymerization of alpha-amino acid N-carboxyanhydrides. J Am Chem Soc 2007;129(46):14114-15
  • Lu H, Cheng J. N-Trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides. J Am Chem Soc 2008;130(38):12562-3
  • Hartmuth CK, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 2001;40(11):2004-21
  • Schlaad H, Antonietti M. Block copolymers with amino acid sequences: Molecular chimeras of polypeptides and synthetic polymers. Eur Phys J E 2003;10(1):17-23
  • Lutz JF, Schutt D, Kubowicz S. Preparation of well-defined diblock copolymers with short polypeptide segments by polymerization of N-carboxy anhydrides. Macromol Rapid Commun 2005;26(1):23-8
  • Curtin SA, Deming TJ. Initiators for End-Group Functionalized Polypeptides via tandem addition reactions. J Am Chem Soc 1999;121(32):7427-8
  • Rostovtsev VV, Green LG, Fokin VV, A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “Ligation” of azides and terminal alkynes. Angew Chem Int Ed 2002;41(14):2596-9
  • Agut W, Taton D, Lecommandoux S. A versatile synthetic approach to polypeptide based rod−coil block copolymers by click chemistry. Macromolecules 2007;40(16):5653-61
  • Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 2010;7(10):1191-207
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70(1-2):1-20
  • Vicent MJ, Ringsdorf H, Duncan R. Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev 2009;61(13):1117-20
  • Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 1975;51:135-53
  • Maeda H. Tumor-selective delivery of macromolecular drugs via the epr effect: background and future prospects. Bioconjugate Chem 2010;21(5):797-802
  • Information about clinical development of Opaxio™. Cell therapeutics, Inc. Avaible from http://www.celltherapeutics.com/opaxio [Last accessed 27 July 2011]
  • Alexis F, Pridgen E, Molnar LK, Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5(4):505-15
  • Gaspar R, Duncan R. Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev 2009;61(13):1220-31
  • McCarthy TD, Karellas P, Henderson SA, Dendrimers as Drugs:  discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2005;2(4):312-18
  • Rupp R, Rosentha SL, Stanberry LR. VivaGel™ (SPL7013 Gel): a candidate dendrimer - microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2007;4:561-6
  • Yuan H, Luo K, Lai Y, A novel poly(L-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions. Mol Pharm 2010;7(4):953-62
  • Zhou Z, Shen Y, Tang J, Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater 2009;19(22):3580-9
  • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002;295(5564):2418-21
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47(1):113-31
  • Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002;54(2):169-90
  • Kataoka K, Kwon GS, Yokoyama M, Block copolymer micelles as vehicles for drug delivery. J Control Release 1993;24(1-3):119-32
  • Masayuki Y, Mizue M, Noriko Y, Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 1990;11(1-3):269-78
  • Yokoyama M, Okano T, Sakurai Y, Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991;51(12):3229-36
  • Nakanishi T, Fukushima S, Okamoto K, Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001;74(1-3):295-302
  • Matsumura Y, Hamaguchi T, Ura T, Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004;91(10):1775-81
  • Hamaguchi T, Matsumura Y, Suzuki M, NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005;92(7):1240-6
  • Hamaguchi T, Kato K, Yasui H, A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007;97(2):170-6
  • Koizumi F, Kitagawa M, Negishi T, Novel SN-38–incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor–secreting bulky tumors. Cancer Res 2006;66(20):10048-56
  • Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 2011;63(3):184-92
  • Nishiyama N, Kato Y, Sugiyama Y, Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res 2001;18(7):1035-41
  • Cabral H, Nishiyama N, Okazaki S, Preparation and biological properties of dichloro(1,2-diaminocyclohexane) platinum(II) (DACHPt)-loaded polymeric micelles. J Control Release 2005;101(1-3 SPEC. ISS):223-32
  • Cabral H, Nishiyama N, Kataoka K. Optimization of (1,2-diamino-cyclohexane)platinum(II)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity. J Control Release 2007;121(3):146-55
  • Bae Y, Fukushima S, Harada A, Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 2003;42(38):4640-3
  • Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 2007;18(4):1131-9
  • Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003;91(1-2):103-13
  • Chow D, Nunalee ML, Lim DW, Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 2008;62(4):125-55
  • Wright ER, Conticello VP. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev 2002;54(8):1057-73
  • Dreher MR, Liu W, Michelich CR, Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors. Cancer Res 2007;67(9):4418-24
  • Mackay JA, Chilkoti A. Temperature sensitive peptides: engineering hyperthermia-directed therapeutics. Int J Hyperthermia 2008;24(6):483-95
  • MacKay JA, Chen M, McDaniel JR, Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 2009;8(12):993-9
  • Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 1995;28(15):5294-9
  • Kabanov AV, Bronich TK, Kabanov VA, Soluble stoichiometric complexes from Poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions. Macromolecules 1996;29(21):6797-802
  • Lee Y, Kataoka K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Mater 2009;5(20):3810-17
  • Harada A, Kataoka K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci 2006;31(11):949-82
  • Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006;112(3):630-48
  • Osada K, Christie RJ, Kataoka K. Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface 2009;6:S325-39
  • Harada-Shiba M, Yamauchi K, Harada A, Polyion complex micelles as vectors in gene therapy - pharmacokinetics and in vivo gene transfer. Gene Ther 2002;9(6):407-14
  • Katayose S, Kataoka K. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)−poly(l-lysine) block copolymer. Bioconjug Chem 1997;8(5):702-7
  • Kim W, Yamasaki Y, Jang W-D, Thermodynamics of DNA condensation induced by poly(ethylene glycol)-block-polylysine through polyion complex micelle formation. Biomacromolecules 2010;11(5):1180-6
  • Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)−poly(aspartic acid) block copolymer in aqueous medium. Macromolecules 1998;31(2):288-94
  • Harada A, Kataoka K. On−off control of enzymatic activity synchronizing with reversible formation of supramolecular assembly from enzyme and charged block copolymers. J Am Chem Soc 1999;121(39):9241-2
  • Jang WD, Nishiyama N, Zhang GD, Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with polyethylene glycol to enhance intracellular photodynamic efficacy. Angew Chem Int Ed Engl 2005;44(3):419-23
  • Stapert HR, Nishiyama N, Jiang DL, Polyion complex micelles encapsulating light-harvesting ionic dendrimer zinc porphyrins. Langmuir 2000;16(21):8182-8
  • Zhang GD, Nishiyama N. Harada A, et al. pH-sensitive assembly of light-harvesting dendrimer zinc porphyrin bearing peripheral groups of primary amine with poly(ethylene glycol)-b-poly(aspartic acid) in aqueous solution. Macromolecules 2003;36(4):1304-9
  • Jang WD, Nakagishi Y, Nishiyama N, Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release 2006;113(1):73-9
  • Sousa-Herves A, Fernandez-Megia E, Riguera R. Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles. Chem Commun 2008(27):3136-8
  • Oishi M, Kataoka K, Nagasaki Y. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjug Chem 2006;17(3):677-88
  • Oba M, Aoyagi K, Miyata K, Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol Pharm 2008;5(6):1080-92
  • Soliman M, Allen S, Davies MC, Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem Commun 2010;46(30):5421-33
  • Hartig S, Greene R, Dikov M, Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res 2007;24(12):2353-69
  • Morris MC, Chaloin L, Heitz F, Translocating peptides and proteins and their use for gene delivery. Curr Opin Biotechnol 2000;11(5):461-6
  • McKenzie DL, Kwok KY, Rice KG. A potent new class of reductively activated peptide gene delivery agents. J Biol Chem 2000;275(14):9970-7
  • Putnam D, Gentry CA, Pack DW, Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 2001;98(3):1200-5
  • Information about Poly-ICLC. Oncovir. Available from: http://www.oncovir.com/id2.html [Last accessed 27 July 2011]
  • Rosenfeld MR, Chamberlain MC, Grossman SA, A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neurol Oncol 2010;12(10):1071-7
  • Grossman SA, Ye X, Piantadosi S, Survival of patients with newly diagnosed glioblastoma treated with radiation and Temozolomide in Research Studies in the United States. Clin Cancer Res 2010;16(8):2443-9
  • Butowski N. Immunostimulants for malignant gliomas. Neurosurg Clin N Am 2010;21(1):53-65
  • Dincer S, Turk M, Karagoz A, Potential c-myc antisense oligonucleotide carriers: PCl/PEG/PEI and PLL/PEG/PEI. Artif Cells Blood Substit Immobil 2011;39(3):143-54
  • Ward CM, Pechar M, Oupicky D, Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. J Gene Med 2002;4(5):536-47
  • Ramsay E, Hadgraft J, Birchall J, Examination of the biophysical interaction between plasmid DNA and the polycations, polylysine and polyornithine, as a basis for their differential gene transfection in-vitro. Int J Pharm 2000;210(1-2):97-107
  • Ramsay E, Gumbleton M. Polylysine and polyornithine gene transfer complexes: a Study of Complex Stability and Cellular Uptake as a Basis for their Differential in-vitro Transfection Efficiency. J Drug Target 2002;10(1):1-9
  • Mann A, Khan MA, Shukla V, Atomic force microscopy reveals the assembly of potential DNA "nanocarriers" by poly-l-ornithine. Biophys Chem 2007;129(2-3):126-36
  • Tung C-H, Weissleder R. Arginine containing peptides as delivery vectors. Adv Drug Deliv Rev 2003;55(2):281-94
  • Patel L, Zaro J, Shen W-C. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 2007;24(11):1977-92
  • Kim E-J, Shim G, Kim K, Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J Gene Med 2009;11(9):791-803
  • Kim HH, Choi HS, Yang JM, Characterization of gene delivery in vitro and in vivo by the arginine peptide system. Int J Pharm 2007;335(1-2):70-8
  • Lingnau K, Egyed A, Schellack C, Poly–arginine synergizes with oligodeoxynucleotides containing CpG-motifs (CpG-ODN) for enhanced and prolonged immune responses and prevents the CpG-ODN-induced systemic release of pro-inflammatory cytokines. Vaccine 2002;20(29-30):3498-508
  • Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol 2007;8:227
  • Cheng H, Li YY, Zeng X, Protamine sulfate/poly(l-aspartic acid) polyionic complexes self-assembled via electrostatic attractions for combined delivery of drug and gene. Biomaterials 2009;30(6):1246-53
  • Gomez J, Fischer S, Csaba N, A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res 2007;24(10):1927-35
  • Dinauer N, Lochmann D, Demirhan I, Intracellular tracking of protamine/antisense oligonucleotide nanoparticles and their inhibitory effect on HIV-1 transactivation. J Control Release 2004;96(3):497-507
  • Weyermann J, Lochmann D, Zimmer A. Comparison of antisense oligonucleotide drug delivery systems. J Control Release 2004;100(3):411-23
  • Scheel B, Teufel R, Probst J, Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 2005;35(5):1557-66
  • Weyermann J, Lochmann D, Georgens C, Albumin-protamine-oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: cellular uptake and effect. Eur J Pharm Biopharm 2005;59(3):431-8
  • Thomas JJ, Rekha MR, Sharma CP. Dextran-protamine polycation: an efficient nonviral and haemocompatible gene delivery system. Colloids Surf B Biointerfaces 2010;81(1):195-205
  • Mok H, Park JW, Park TG. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjug Chem 2007;18(5):1483-9
  • Vladimir PT. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 2008;60(4-5):548-58
  • Hassane FS, Abes R, Andaloussi SEL, Insights into the cellular trafficking of splice redirecting oligonucleotides complexed with chemically modified cell-penetrating peptides. J Control Release 2011;153(2):163-72
  • Kichler A, Mason AJ, Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery. Biochim Biophys Acta 2006;1758(3):301-7
  • Kurosaki T, Kitahara T. Kawakami S, et al. [gamma]-polyglutamic acid-coated vectors for effective and safe gene therapy. J Control Release 2010;142(3):404-10
  • Chan Y-P, Meyrueix R, Kravtzoff R, Review on Medusa®:a polymer-based sustained release technology for protein and peptide drugs. Expert Opin Drug Deliv 2007;4(4):441-51
  • Chan YP, Meyrueix R, Kravtzoff R, Basulin, a long-acting formulation of human insulin based on Medusa nanoparticles. NanoBiotechnology 2005;1(3):317-18
  • Holowka EP, Sun VZ, Kamei DT, Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 2007;6(1):52-7
  • Holowka EP, Deming TJ. Synthesis and crosslinking of L-DOPA containing polypeptide vesicles. Macromol Biosci 2010;10(5):496-502
  • Upadhyay KK, Bhatt AN, Mishra AK, The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials 2010;31(10):2882-92
  • Palmer LC, Stupp SI. Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res 2008;41(12):1674-84
  • Horii A, Wang X, Gelain F, Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2007;2(2):e190
  • Kisiday J, Jin M, Kurz B, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc Natl Acad Sci USA 2002;99(15):9996-10001
  • Holmes TC, de Lacalle S, Su X, Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA 2000;97(12):6728-33
  • Gelain F, Bottai D, Vescovi A, Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-Dimensional cultures. PLoS ONE 2006;1(1):e119
  • Genove E, Shen C, Zhang S, The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 2005;26(16):3341-51
  • Koutsopoulos S, Unsworth LD, Nagai Y, Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci 2009;106(12):4623-8
  • Barnes CP, Sell SA, Boland ED, Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007;59(14):1413-33
  • Silva GA, Czeisler C, Niece KL, Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303(5662):1352-5
  • Ellis-Behnke RG, Liang Y-X, You S-W, Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 2006;103(13):5054-9
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Knop K, Hoogenboom R, Fischer D, Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010;49(36):6288-308
  • Metselaar JM, Bruin P, De Boer LWT, A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem 2003;14(6):1156-64
  • Romberg B, Oussoren C, Snel CJ, Effect of liposome characteristics and dose on the pharmacokinetics of liposomes coated with poly(amino acid)s. Pharm Res 2007;24(12):2394-401
  • Romberg B, Metselaar JM, Baranyi L, Poly(amino acid)s: promising enzymatically degradable stealth coatings for liposomes. Int J Pharm 2007;331(2):186-9
  • Li SD, Huang L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm 2006;3(5):579-88
  • Li SD, Chen YC, Hackett MJ, Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 2008;16(1):163-9
  • Sloat B, Cui Z. Strong mucosal and systemic immunities induced by nasal immunization with anthrax protective antigen protein incorporated in liposome–protamine–DNA particles. Pharm Res 2006;23(2):262-9
  • Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 2007;96(2):203-9
  • Wattendorf U, Merkle HP. PEGylation as a tool for the biomedical engineering of surface modified microparticles. J Pharm Sci 2008;97(11):4655-69
  • Hafner AM, Corthesy B, Textor M, Tuning the immune response of dendritic cells to surface-assembled poly(I:C) on microspheres through synergistic interactions between phagocytic and TLR3 signaling. Biomaterials 2011;32(10):2651-61
  • Martinez Gomez JM, Csaba N, Fischer S, Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. J Control Release 2008;130(2):161-7
  • Nakamura S, Kanatani Y, Kishimoto S, Controlled release of FGF-2 using fragmin/protamine microparticles and effect on neovascularization. J Biomed Mater Res A 2009;91(3):814-23
  • De Koker S, Naessens T, De Geest BG, Biodegradable polyelectrolyte microcapsules: antigen delivery tools with Th17 skewing activity after pulmonary delivery. J Immunol 2010;184(1):203-11
  • De Koker S, De Geest BG, Singh SK, Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angew Chem Int Ed 2009;48(45):8485-9
  • Prego C, Torres D, Alonso MJ. Chitosan Nanocapsules: a New Carrier for Nasal Peptide Delivery. J Drug Deliv Sci Technol. 2006;16(5):331-7
  • Lozano MV, Torrecilla D, Torres D, Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules 2008;9(8):2186-93
  • Rosas-Durazo A, Lizardi J, Higuera-Ciapara I, Development and characterization of nanocapsules comprising dodecyltrimethylammonium chloride and [kappa]-carrageenan. Colloids Surf B Biointerfaces 2011;86(1):242-6
  • Santander-Ortega MJ, Peula-Garcia JM, Goycoolea FM, Chitosan nanocapsules: effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability. Colloids Surf B Biointerfaces 2011;82(2):571-80
  • Lozano MV, Lollo G, Brea J, Polyarginine nanocapsules: a new platform for intracellular drug delivery. Submitted
  • Alonso MJ, Torres D, Rivera G, Nanocapsulas con cubierta polimerica. P201130015; 2011
  • Lundberg M, Wikstrom S, Johansson M. Cell surface adherence and endocytosis of protein transduction domains. Mol Ther 2003;8(1):143-50
  • Lozano MV, Alonso MJ, Torres D. Polyarginine nanocapsules. WO2010122204; 2010
  • Pipeline of clinical trials. NanoCarrier Co. L. Available from: http://www.nanocarrier.co.jp/en/research/pipeline/index.html [Last accessed 25 July 2011]
  • Pipeline of clinical trials. Flamel Technologies. Available from: http://www.flamel.com/technology-platforms/medusa/ [Last accessed 25 July 2011]
  • Information of clinical trials. Available from: www.Clinicaltrials.gov [Last accessed 25 July 2011]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.