5,790
Views
56
CrossRef citations to date
0
Altmetric
Editorial

Nano-technology for targeted drug delivery to combat antibiotic resistance

, , , &
Pages 1325-1332 | Published online: 28 Aug 2012

Bibliography

  • Freire-Moran L, Aronsson B, Manz C, Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now. Drug Resist Updat 2011;14:118-24
  • Bush K, Courvalin P, Dantas G, Tackling antibiotic resistance. Nat Rev Microbiol 2011;9:894-6
  • Bassetti M, Ginocchio F, Mikulska M, Will new antimicrobials overcome resistance among Gram-negatives? Expert Rev Anti Infect Ther 2011;9:909-22
  • Koomanachai P, Crandon JL, Nicolau DP. Newer developments in the treatment of Gram-positive infections. Expert Opin Pharmacother 2009;10:2829-43
  • van Hal SJ, Paterson DL. New Gram-positive antibiotics: better than vancomycin? Curr Opin Infect Dis 2011;24:515-20
  • Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence 2011;2:395-401
  • Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol 2011;90:1655-67
  • Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950-62
  • Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 2010;143:2-12
  • Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 2010;17:4559-77
  • Allahverdiyev AM, Kon KV, Abamor ES, Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 2011;9:1035-52
  • Banerjee M, Mallick S, Paul A, Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 2010;26:5901-8
  • Ma Y, Zhou T, Zhao C. Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials. Carbohydr Res 2008;343:230-7
  • Sanpui P, Murugadoss A, Prasad PV, The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Food Microbiol 2008;124:142-6
  • Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 2010;62:394-407
  • Friedman AJ, Han G, Navati MS, Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide 2008;19:12-20
  • Potara M, Jakab E, Damert A, Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 2011;22:135101
  • Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 2002;22:129-50
  • Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm 2010;387:187-98
  • Allen TM. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 1998;56:747-56
  • Bakker-Woudenberg IA, Lokerse AF, ten Kate MT, Liposomes with prolonged blood circulation and selective localization in Klebsiella pneumoniae-infected lung tissue. J Infect Dis 1993;168:164-71
  • Bakker-Woudenberg IA, Storm G, Woodle MC. Liposomes in the treatment of infections. J Drug Target 1994;2:363-71
  • Bakker-Woudenberg IA. Long-circulating sterically stabilized liposomes as carriers of agents for treatment of infection or for imaging infectious foci. Int J Antimicrob Agents 2002;19:299-311
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007;73:1712-20
  • Ghosh S, Kaushik R, Nagalakshmi K, Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Carbohydr Res 2010;345:2220-7
  • Shahverdi AR, Fakhimi A, Shahverdi HR, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007;3:168-71
  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 2008;4:707-16
  • Martinez-Gutierrez F, Olive PL, Banuelos A, Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 2010;6:681-8
  • Ren G, Hu D, Cheng EW, Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009;33:587-90
  • Prajapati VK, Awasthi K, Yadav TP, An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J Infect Dis 2012;205:333-6
  • Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008;41:60-8
  • Pantarotto D, Briand JP, Prato M, Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 2004;1:16-17
  • Georgakilas V, Kordatos K, Prato M, Organic functionalization of carbon nanotubes. J Am Chem Soc 2002;124:760-1
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1-20
  • Zhang L, Pornpattananangku D, Hu CM, Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010;17:585-94
  • Santos-Magalhaes NS, Mosqueira VC. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010;62:560-75
  • Sosnik A, Carcaboso AM, Glisoni RJ, New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 2010;62:547-59
  • Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des 2006;12:4669-84
  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011;156:128-45
  • Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005;10:35-43
  • Cheng Y, Qu H, Ma M, Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 2007;42:1032-8
  • Vaks L, Benhar I. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines. J Nanobiotechnol 2011;9:58
  • Jung J, Matsuzaki T, Tatematsu K, Bio-nanocapsule conjugated with liposomes for in vivo pinpoint delivery of various materials. J Control Release 2008;126:255-64
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63:136-51
  • Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev 2011;24:71-109
  • Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007;3:541-8
  • Arnusch CJ, Albada HB, van Vaardegem M, Trivalent ultrashort lipopeptides are potent pH dependent antifungal agents. J Med Chem 2012;55:1296-302
  • Fjell CD, Hiss JA, Hancock REW, Designing antimicrobial peptides: form follows function. Nature Rev drug Disc 2012;11:37-51
  • Manca ML, Manconi M, Valenti D, Liposomes coated with chitosan-xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci 2012;101:566-75
  • Alexander BD, Winkler TP, Shi S, In vitro characterization of nebulizer delivery of liposomal amphotericin B aerosols. Pharm Dev Technol 2011;16:577-82
  • Fielding RM, Lewis RO, Moon-McDermott L. Altered tissue distribution and elimination of amikacin encapsulated in unilamellar, low-clearance liposomes (MiKasome). Pharm Res 1998;15:1775-81
  • Magallanes M, Dijkstra J, Fierer J. Liposome-incorporated ciprofloxacin in treatment of murine salmonellosis. Antimicrob Agents Chemother 1993;37:2293-7
  • Omri A, Suntres ZE, Shek PN. Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 2002;64:1407-13
  • Onyeji CO, Nightingale CH, Marangos MN. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection 1994;22:338-42
  • Kim HJ, Jones MN. The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res 2004;14:123-39
  • Schumacher I, Margalit R. Liposome-encapsulated ampicillin: physicochemical and antibacterial properties. J Pharm Sci 1997;86:635-41
  • Gangadharam PR, Ashtekar DA, Ghori N, Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother 1991;28:425-35
  • Cavalli R, Gasco MR, Chetoni P, Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 2002;238:241-5
  • Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 2005;85:227-34
  • Sanna V, Gavini E, Cossu M, Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex-vivo and in-vivo studies. J Pharm Pharmacol 2007;59:1057-64
  • Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res B Appl Biomater 2008;86:105-12
  • Tsiolis P, Giamarellos-Bourboulis EJ, Mavrogenis AF, Experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus treated with a polylactide carrier releasing linezolid. Surg Infect (Larchmt) 2011;12:131-5
  • Espuelas MS, Legrand P, Loiseau PM, In vitro antileishmanial activity of amphotericin B loaded in poly(epsilon-caprolactone) nanospheres. J Drug Target 2002;10:593-9
  • Toti US, Guru BR, Hali M, Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 2011;32:6606-13
  • Ungaro F, d'Angelo I, Coletta C, Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release 2012;157:149-59
  • Valizadeh H, Mohammadi G, Ehyaei R, Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmazie 2012;67:63-8
  • Forestier F, Gerrier P, Chaumard C, Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages. J Antimicrob Chemother 1992;30:173-9
  • Turos E, Shim JY, Wang Y, Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 2007;17:53-6
  • Turos E, Reddy GS, Greenhalgh K, Penicillin-bound polyacrylate nanoparticles: restoring the activity of beta-lactam antibiotics against MRSA. Bioorg Med Chem Lett 2007;17:3468-72
  • Abeylath SC, Turos E, Dickey S, Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorg Med Chem 2008;16:2412-18
  • Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:16
  • Ma M, Cheng Y, Xu Z, Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem 2007;42:93-8
  • Mishra MK, Kotta K, Hali M, PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine 2011;7:935-44
  • Bhadra D, Bhadra S, Jain NK. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J Pharm Pharm Sci 2005;8:467-82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.