2,234
Views
172
CrossRef citations to date
0
Altmetric
Reviews

Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction

, MS & , PhD
Pages 59-72 | Published online: 09 Nov 2012

Bibliography

  • Roger VL, Go AS, Lloyd-Jones DM, Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 2012;125:e2‐e220
  • Sutton MGSJ, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 2000;101:2981‐8
  • Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 2006;48:907‐13
  • Rane AA, Christman KL. Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol 2011;58:2615‐29
  • Li Z, Guan J. Hydrogels for cardiac tissue engineering. Polymers 2011;3:740‐61
  • Tous E, Purcell B, Ifkovits JL, Burdick JA. Injectable acellular hydrogels for cardiac repair. J Cardiovasc Transl Res 2011;4:528‐42
  • Wang H, Zhou J, Liu Z, Wang C. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med 2010;14:1044‐55
  • Leor J, Tuvia S, Guetta V, Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol 2009;54:1014‐23
  • Dib N, Campbell A, Jacoby DB, Safety and feasibility of percutaneous autologous skeletal myoblast transplantation in the coil-infarcted swine myocardium. J Pharmacol Toxicol Methods 2006;54:71‐7
  • Chachques JC, Azarine A, Mousseaux E, MRI evaluation of local myocardial treatments: epicardial versus endocardial (Cell-Fix catheter) injections. J Interv Cardiol 2007;20:188‐96
  • Gyöngyösi M, Dib N. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat Rev Cardiol 2011;8:393‐404
  • Dib N, Menasche P, Bartunek JJ, Recommendations for successful training on methods of delivery of biologics for cardiac regeneration: a report of the International Society for Cardiovascular Translational Research. JACC Cardiovasc Interv 2010;3:265‐75
  • Laham R, Post M, Rezaee M. Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution. Drug Metab Dispos 2005;33:1101‐7
  • Landa N, Miller L, Feinberg MS, Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 2008;117:1388‐96
  • Dai W, Wold LE, Dow JS, Kloner RA. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol 2005;46:714‐19
  • Huang NF, Yu J, Sievers R, Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng 2005;11:1860‐6
  • Singelyn JM, DeQuach JA, Seif-Naraghi SB, Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 2009;30:5409‐16
  • Christman KL, Fok HH, Sievers RE, Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 2004;10:403‐9
  • Christman KL, Vardanian AJ, Fang QZ, Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 2004;44:654‐60
  • Shen D, Wang X, Zhang L, The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 2011;32:9290‐9
  • Singelyn JM, Sundaramurthy P, Johnson TD, Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 2012;59:751‐63
  • Ifkovits JL, Tous E, Minakawa M, Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 2010;107:11507‐12
  • Ou L, Li W, Zhang Y, Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med 2011;15:1310‐18
  • Mukherjee R, Zavadzkas JA, Saunders SM, Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann Thorac Surg 2008;86(4):1268‐77
  • Davis ME, Motion JPM, Narmoneva D, Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005;111:442‐50
  • Kofidis T, Lebl DR, Martinez EC, Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 2005;112:I173‐7
  • Fujimoto KL, Ma Z, Nelson DM, Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 2009;30:4357‐68
  • Jiang X-J, Wang T, Li X-Y, Injection of a novel synthetic hydrogel preserves left ventricle function after myocardial infarction. J Biomed Mater Res A 2009;90:472‐7
  • Ryan LP, Matsuzaki K, Noma M, Dermal filler injection: a novel approach for limiting infarct expansion. Ann Thorac Surg 2009;87:148‐55
  • Okada M, Payne TR, Oshima H, Differential efficacy of gels derived from small intestinal submucosa as an injectable biomaterial for myocardial infarct repair. Biomaterials 2010;31:7678‐83
  • Birnbaum Y, Fishbein M. Ventricular septal rupture after acute myocardial infarction. N Engl J Med 2002;347:1426‐32
  • Menon V, Webb JG, Hillis LD, Outcome and profile of ventricular septal rupture with cardiogenic shock after myocardial infarction: a report from the SHOCK trial registry. J Am Coll Cardiol 2000;36(3 Suppl A):1110‐16
  • Lemery R, Smith HC, Giuliani ER, Gersh BJ. Prognosis in rupture of the ventricular septum after acute myocardial infarction and role of early surgical intervention. Am J Cardiol 1992;70:147‐51
  • Pohjola-Sintonen S, Muller JE, Stone PH, Ventricular septal and free wall rupture complicating acute myocardial infarction: experience in the multicenter investigation of limitation of infarct size. Am Heart J 1989;117:809‐18
  • Edwards BS, Edwards WD, Edwards JE. Ventricular septal rupture complicating acute myocardial infarction: identification of simple and complex types in 53 autopsied hearts. Am J Cardiol 1984;54:1201‐5
  • Shaikh FM, Callanan A, Kavanagh EG, Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 2008;188:333‐46
  • Thompson WD, Smith EB, Stirk CM, Angiogenic activity of fibrin degradation products is located in fibrin fragment-E. J Pathol 1992;168:47‐53
  • Yu J, Christman KL, Chin E, Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2009;137:180‐7
  • Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials 2010;3:1863‐87
  • Achilli M, Mantovani D. Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers 2010;2:664‐80
  • Williams BR, Gelman RA, Poppke DC, Piez KA. Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem 1978;253:6578‐85
  • Rosenblatt J, Devereux B, Wallace DG. Injectable collagen as a pH-sensitive hydrogel. Biomaterials 1994;15:985‐95
  • Na GC, Butz LJ, Carroll RJ. Mechanism of in vitro collagen fibril assembly. Kinetic and morphological studies. J Biol Chem 1986;261:12290‐9
  • Hughes CS, Postovit LM, Lajoie G. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 2010;10:1886‐90
  • Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999;20:45‐53
  • Leor J, Aboulafia-Etzion S, Dar A, Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 2000;102:III56‐61
  • Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 2002;80:305‐12
  • Al-Shamkhani A, Duncan R. Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J Bioact Compat Polym 1995;10:4‐13
  • Cabrales P, Tsai AG, Intaglietta M. Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. Am J Physiol Heart Circ Physiol 2005;288:H1708‐16
  • BioLineRX Ltd. Safety and Feasibility of the Injectable BL-1040 Implant. NCT00557531; 2007
  • Ikara Holdings, Inc. IK-5001 for the Prevention of Remodeling of the Ventricle and Congestive Heart Failure After Acute Myocardial Infarction. NCT01226563; 2010
  • Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol 2006;85:699‐715
  • Yoon SJ, Fang YH, Lim CH, Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J Biomed Mater Res B Appl Biomater 2009;91:163‐71
  • Tous E, Ifkovits JL, Koomalsingh KJ, Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 2011;12:4127‐35
  • Kim I-Y, Seo S-J, Moon H-S, Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008;26:1‐21
  • Yang T-L. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 2011;12:1936‐63
  • Venkatesan J, Kim S-K. Chitosan composites for bone tissue engineering–an overview. Mar Drugs 2010;8:2252‐66
  • Lu W-N, Lü S-H, Wang H-B, Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 2009;15:1437‐47
  • Wang H, Zhang X, Li Y, Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transpl 2010;29:881‐7
  • Liu Z, Wang H, Wang Y, The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 2012;33:3093‐106
  • Gilbert TW, Sellaro TL. Decellularization of tissues and organs. Biomaterials 2006;27:3675‐83
  • Hoshiba T, Lu H, Kawazoe N, Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther 2010;10:1717‐28
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32:3233‐43
  • Schaner PJ, Martin ND, Tulenko TN, Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 2004;40:146‐53
  • Ott HC, Matthiesen TS, Goh S-K, Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008;14:213‐21
  • Elkins RC, Dawson PE, Goldstein S, Decellularized human valve allografts. Ann Thorac Surg 2001;71(5 Suppl):S428‐32
  • Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng Part A 2010;16:2017‐27
  • Seif-Naraghi SB, Horn D, Schup-Magoffin PA, Patient-to-patient variability in autologous pericardial matrix scaffolds for cardiac repair. J Cardiovasc Transl Res 2011;4(5):545‐56
  • Rouse JG, Van Dyke ME. A review of keratin-based biomaterials for biomedical applications. Materials 2010;3:999‐1014
  • Dobner S, Bezuidenhout D, Govender P, A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J Card Fail 2009;15:629‐36
  • Rane A, Chuang JS, Shah A, Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS ONE 2011;6:e21571
  • Wang T, Jiang X-J, Lin T, The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 2009;30:4161‐7
  • Wu J, Zeng F, Huang X-P, Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 2011;32:579‐86
  • Kraehenbuehl TP, Ferreira LS, Hayward AM, Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 2011;32:1102‐9
  • Wang T, Wu DQ, Jiang XJ, Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail 2009;11:14‐19
  • Li X-Y, Wang T, Jiang X-J, Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 2010;115:194‐9
  • Wall ST, Yeh C-C, Tu RYK, Biomimetic matrices for myocardial stabilization and stem cell transplantation. J Biomed Mater Res A 2010;95A:1055‐66
  • Garbern JC, Minami E, Stayton PS, Murry CE. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 2011;32:2407‐16
  • Martens TP, Godier AFG, Parks JJ, Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant 2009;18:297‐304
  • Johnson TD, Lin SY, Christman KL. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. Nanotechnology 2011;22:494015
  • White HD, Norris RM, Brown M, Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44‐51
  • Mcmanus DD, Shah SJ, Fabi MR, Prognostic value of left ventricular end-systolic volume index as a predictor of heart failure hospitalization in stable coronary artery disease: data from the heart and soul study. J Am Soc Echocardiogr 2009;22:190‐7
  • Stamm C, Nasseri B, Choi Y-H, Hetzer R. Cell therapy for heart disease: great expectations, as yet unmet. Heart Lung Circ 2009;18:245‐56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.