707
Views
105
CrossRef citations to date
0
Altmetric
Reviews

Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics

&
Pages 73-87 | Published online: 01 Dec 2012

Bibliography

  • Jansen B, Zangemeister-Wittke U. Antisense therapy for cancer – the time of truth. Lancet Oncol 2002;3:672-83
  • Vugmeyster Y, Harrold J, Xu X. Absorption, Distribution, Metabolism, and Excretion (ADME) Studies of Biotherapeutics for Autoimmune and Inflammatory Conditions. AAPS J 2012;14(4):714-27
  • Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 2008;7:21-39
  • Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009;61:850-62
  • Lee SH, Chung BH, Park TG, Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing. Acc Chem Res 2012;45:1014-25
  • Antosova Z, Mackova M, Kral V, Macek T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol 2009;27:628-35
  • Guo P. The emerging field of RNA nanotechnology. Nat Nanotechnol 2010;5:833-42
  • Mok H, Park TG. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent. Eur J Pharm Biopharm 2008;70:137-44
  • Mok H, Park JW, Park TG. Microencapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency. Pharm Res 2007;24:2263-9
  • Fang NC, Cheng FY, Ho JA, Yeh CS. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew Chem Int Ed Engl 2012;51(35):8806-10
  • Li P, Zheng Y, Ran H, Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 2012;162(2):349-54
  • Kievit FM, Stephen ZR, Veiseh O, Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano 2012;6:2591-601
  • Rudge S, Peterson C, Vessely C, Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J Control Release 2001;74:335-40
  • Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 2011;23:H217-47
  • Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 2011;44:853-62
  • Veiseh O, Kievit FM, Ellenbogen RG, Zhang M. Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 2011;63:582-96
  • Fang C, Zhang M. Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine. J Control Release 2010;146:2-5
  • Park J, An K, Hwang Y, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004;3:891-5
  • Laurent S, Forge D, Port M, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008;108:2064-110
  • Chouly C, Pouliquen D, Lucet I, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996;13:245-55
  • Prijic S, Scancar J, Romih R, Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J Membr Biol 2010;236:167-79
  • Buerli T, Pellegrino C, Baer K, Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat Protoc 2007;2:3090-101
  • Park JW, Bae KH, Kim C, Park TG. Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 2011;12:457-65
  • Child HW, Del Pino PA, De La Fuente JM, Working together: the combined application of a magnetic field and penetration for the delivery of magnetic nanoparticles to cells in 3D. ACS Nano 2011;5:7910-19
  • Zhao XH, Kim J, Cezar CA, Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 2011;108:67-72
  • Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology 2002;224:817-22
  • Maeda H, Wu J, Sawa T, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-84
  • Kwon IK, Lee SC, Han B, Park K. Analysis on the current status of targeted drug delivery to tumors. J Control Release 2012; Epub ahead of print
  • Mejias R, Perez-Yague S, Gutierrez L, Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 2011;32:2938-52
  • Lammers T, Rizzo LY, Storm G, Kiessling F. Personalized nanomedicine. Clin Cancer Res 2012;18:4889-94
  • Fang C, Bhattarai N, Sun C, Zhang M. Functionalized nanoparticles with long-term stability in biological media. Small 2009;5:1637-41
  • McBain SC, Griesenbach U, Xenariou S, Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 2008;19:405102
  • Lee JH, Huh YM, Jun YW, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007;13:95-9
  • Kohler N, Fryxell GE, Zhang M. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004;126:7206-11
  • Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007;46:1222-44
  • Rebodos RL, Vikesland PJ. Effects of oxidation on the magnetization of nanoparticulate magnetite. Langmuir 2010;26:16745-53
  • Fang C, Zhang M. Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 2009;19:6258-66
  • Stephen ZR, Kievit FM, Zhang MQ. Magnetite nanoparticles for medical MR imaging. Mater Today 2011;14:330-8
  • Veiseh O, Sun C, Fang C, Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 2009;69:6200-7
  • Chastellain M, Petri A, Hofmann H. Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J Colloid Interface Sci 2004;278:353-60
  • Lee JH, Jung MJ, Hwang YH, Heparin-coated superparamagnetic iron oxide for in vivo MR imaging of human MSCs. Biomaterials 2012;33:4861-71
  • Wong RM, Gilbert DA, Liu K, Louie AY. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 2012;6:3461-7
  • Laurent S, Forge D, Port M, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008;108:2064-110
  • Jain N, Wang YJ, Jones SK, Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 2010;26:4465-72
  • Larsen EKU, Nielsen T, Wittenborn T, Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale 2012;4:2352-61
  • Hoshino Y, Koide H, Furuya K, The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc Natl Acad Sci USA 2012;109:33-8
  • Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252-65
  • Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8:15-23
  • Mok H, Veiseh O, Fang C, pH-sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol Pharm 2010;7:1930-9
  • Veiseh O, Kievit FM, Mok H, Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 2011;32:5717-25
  • Veiseh O, Kievit FM, Fang C, Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 2010;31:8032-42
  • Kievit FM, Veiseh O, Fang C, Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 2010;4:4587-94
  • Kievit FM, Veiseh O, Fang C, Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 2010;4:4587-94
  • Fang C, Veiseh O, Kievit F, Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior. Nanomedicine (Lond) 2010;5:1357-69
  • Lee JH, Lee K, Moon SH, All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 2009;48:4174-9
  • Yuan JJ, Armes SP, Takabayashi Y, Synthesis of biocompatible poly[2-(methacryloyloxy)ethyl phosphorylcholine]-coated magnetite nanoparticles. Langmuir 2006;22:10989-93
  • Tian Y, Mao SR. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert Opin Drug Deliv 2012;9:687-700
  • Li X, Li H, Liu G, Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials 2012;33:3013-24
  • Lin JJ, Chen JS, Huang SJ, Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 2009;30:5114-24
  • Ge J, Hu Y, Biasini M, Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed Engl 2007;46:4342-5
  • Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading, and release. Pharm Res 1992;9:283-90
  • He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189-207
  • Curcio A, Marotta R, Riedinger A, Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chem Commun 2012;48:2400-2
  • Jaafar-Maalej C, Elaissari A, Fessi H. Lipid-based carriers: manufacturing and applications for pulmonary route. Expert Opin Drug Deliv 2012;9(9):1111-27
  • del Pino P, Munoz-Javier A, Vlaskou D, Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. Nano Lett 2010;10:3914-21
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-60
  • Amstad E, Kohlbrecher J, Muller E, Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano Lett 2011;11:1664-70
  • Lee S, Shim G, Kim S, Enhanced transfection rates of small-interfering RNA using dioleylglutamide-based magnetic lipoplexes. Nucleic Acid Ther 2011;21:165-72
  • Decuzzi P, Godin B, Tanaka T, Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010;141:320-7
  • Noh YW, Jang YS, Ahn KJ, Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials 2011;32:6254-63
  • Moroz P, Jones SK, Gray BN. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol 2002;80:149-56
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92
  • Chorny M, Polyak B, Alferiev IS, Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J 2007;21:2510-19
  • Kim TD, Lee SU, Yun S, Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood 2011;118:5476-86
  • Lee CH, Kim EY, Jeon K, Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev 2008;17:133-41
  • Pickard MR, Barraud P, Chari DM. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 2011;32:2274-84
  • Sapet C, Laurent N, de Chevigny A, High transfection efficiency of neural stem cells with magnetofection. BioTechniques 2011;50:187-9
  • Kyrtatos PG, Lehtolainen P, Junemann-Ramirez M, Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC Cardiovasc Interv 2009;2:794-802
  • Wilhelm C, Cebers A, Bacri JC, Gazeau F. Deformation of intracellular endosomes under a magnetic field. Eur Biophys J 2003;32:655-60
  • Arbab AS, Jordan EK, Wilson LB, In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 2004;15:351-60
  • Cheng K, Malliaras K, Li TS, Magnetic enhancement of cell retention, engraftment and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell Transplant 2012; Epub ahead of print
  • Cheng K, Li TS, Malliaras K, Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res 2010;106:1570-81
  • Chorny M, Alferiev IS, Fishbein I, Formulation and in vitro characterization of composite biodegradable magnetic nanoparticles for magnetically guided cell delivery. Pharm Res 2012;29:1232-41
  • Riggio C, Calatayud MP, Hoskins C, Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance. Int J Nanomed 2012;7:3155-66
  • Mamelak AN, Jacoby DB. Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin Drug Deliv 2007;4:175-86
  • Veiseh O, Gunn JW, Kievit FM, Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 2009;5:256-64
  • Chertok B, David AE, Yang VC. Magnetically-enabled and MR-monitored selective brain tumor protein delivery in rats via magnetic nanocarriers. Biomaterials 2011;32:6245-53
  • Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 2010;31:6317-24
  • Namiki Y, Namiki T, Yoshida H, A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol 2009;4:598-606
  • Scherer F, Anton M, Schillinger U, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002;9:102-9
  • Kievit FM, Veiseh O, Bhattarai N, PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 2009;19:2244-51
  • Veiseh O, Kievit FM, Gunn JW, A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 2009;30:649-57
  • Veiseh O, Kievit FM, Mok H, Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 2011;32:5717-25
  • Mok H, Park TG. Hybrid polymeric nanomaterials for siRNA delivery and imaging. Macromol Biosci 2012;12:40-8
  • Wang C, Ding C, Kong M, Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo. Biochem Biophys Res Commun 2011;410:537-42
  • Dames P, Gleich B, Flemmer A, Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2007;2:495-9
  • Amirfazli A. Nanomedicine: magnetic nanoparticles hit the target. Nat Nanotechnol 2007;2:467-8
  • Liu TC, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 2007;4:101-17
  • Park JW, Mok H, Park TG. Epidermal growth factor (EGF) receptor targeted delivery of PEGylated adenovirus. Biochem Biophys Res Commun 2008;366:769-74
  • Park JW, Mok H, Park TG. Physical adsorption of PEG grafted and blocked poly-L-lysine copolymers on adenovirus surface for enhanced gene transduction. J Control Release 2010;142:238-44
  • Mok H, Park JW, Park TG. Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. Bioconjug Chem 2008;19:797-801
  • Fasbender A, Zabner J, Chillon M, Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem 1997;272:6479-89
  • Sapet C, Pellegrino C, Laurent N, Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo. Pharm Res 2012;29:1203-18
  • Hwang JH, Lee S, Kim E, Heparin-coated superparamagnetic nanoparticle-mediated adeno-associated virus delivery for enhancing cellular transduction. Int J Pharm 2011;421:397-404
  • Yanai A, Hafeli UO, Metcalfe AL, Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant 2012; Epub ahead of print
  • Jing Y, Mal N, Williams PS, Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. FASEB J 2008;22:4239-47
  • Deddens LH, Van Tilborg GA, Mulder WJ, Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies. Cerebrovasc Dis 2012;33:392-402
  • Lim J, Dobson J. Improved transfection of HUVEC and MEF cells using DNA complexes with magnetic nanoparticles in an oscillating field. J Genet 2012;91:223-7
  • Hoyer C, Vogt MA, Richter SH, Repetitive exposure to a 7 Tesla static magnetic field of mice in utero does not cause alterations in basal emotional and cognitive behavior in adulthood. Reprod Toxicol 2012;34:86-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.