681
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Three-dimensionally engineered biomimetic tissue models for in vitro drug evaluation: delivery, efficacy and toxicity

& , PhD
Pages 369-383 | Published online: 06 Jan 2013

Bibliography

  • Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006;7(3):211-24
  • Comley J. 3D cell culture: easier said than done! Drug Discovery World. 2010;11(3):25-41
  • Esch MB, King TL, Shuler ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 2011;13(1):55-72
  • Lepper ER, Smith NF, Cox MC, Thalidomide metabolism and hydrolysis: mechanisms and implications. Curr Drug Metab 2006;7(6):677-85
  • Van Vliet E. Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX 2011;28(1):17-44
  • Andersen ME, Krewski D. Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 2009;107(2):324-30
  • Jemal A, Bray F, Center MM, Global cancer statistics. CA Cancer J Clin 2011;61(2):69-90
  • Ziółkowska K, Stelmachowska A, Kwapiszewski R, Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens Bioelectron 2013;40(1):68-74
  • Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001;294(5547):1708-12
  • Nilsson EE, Westfall SD, McDonald C, An in vivo mouse reporter gene (human secreted alkaline phosphatase) model to monitor ovarian tumor growth and response to therapeutics. Cancer Chemother Pharmacol 2002;49(2):93-100
  • Hirschhaeuser F, Menne H, Dittfeld C, Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010;148(1):3-15
  • Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2008;3(9-10):1172-84
  • Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids – old hat or new challenge? Int J Radiat Biol 2007;83(11-12):849-71
  • Mehta G, Hsiao AY, Ingram M, Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 2012; [Epub ahead of print]
  • Nyga A, Cheema U, Loizidou M. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 2011;5(3):239-48
  • Freyer JP, Sutherland RM. Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res 1980;40(11):3956-65
  • Kim TH, Mount CW, Gombotz WR, Pun SH. The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 2010;31(28):7386-97
  • Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007;99(19):1441-54
  • Ho VHB, Slater NKH, Chen R. PH-responsive endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models. Biomaterials 2011;32(11):2953-8
  • Waite CL, Roth CM. PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjug Chem 2009;20(10):1908-16
  • Waite CL, Roth CM. Binding and transport of PAMAM-RGD in a tumor spheroid model: the effect of RGD targeting ligand density. Biotechnol Bioeng 2011;108(12):2999-3008
  • Wasungu L, Escoffre JM, Valette A, A 3D in vitro spheroid model as a way to study the mechanisms of electroporation. Int J Pharm 2009;379(2):278-84
  • Chopinet L, Wasungu L, Rols MP. First explanations for differences in electrotransfection efficiency in vitro and in vivo using spheroid model. Int J Pharm 2012;423(1):7-15
  • Gaggioli C, Deckert M, Robert G, HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1. Oncogene 2005;24(8):1423-33
  • Marrero B, Heller R. The use of an invitro 3D melanoma model to predict invivo plasmid transfection using electroporation. Biomaterials 2012;33(10):3036-46
  • Prados J, Melguizo C, Rama AR, Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemother Pharmacol 2010;66(1):69-78
  • Rama AR, Prados J, Melguizo C, Synergistic antitumoral effect of combination E gene therapy and doxorubicin in MCF-7 breast cancer cells. Biomed Pharmacother 2011;65(4):260-70
  • Ong SM, Zhao Z, Arooz T, Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials 2010;31(6):1180-90
  • Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2011;100(1):59-74
  • Szot CS, Buchanan CF, Freeman JW, Rylander MN. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 2011;32(31):7905-12
  • Holliday DL, Brouilette KT, Markert A, Novel multicellular organotypic models of normal and malignant breast: tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res 2009;11(1):R3
  • Adamia S, Maxwell CA, Pilarski LM. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord 2005;5(1):3-14
  • Gurski LA, Jha AK, Zhang C, Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 2009;30(30):6076-85
  • Jin SG, Jeong YI, Jung S, The effect of hyaluronic acid on the invasiveness of malignant glioma cells: comparison of invasion potential at hyaluronic acid hydrogel and matrigel. J Korean Neurosurg Soc 2009;46(5):472-8
  • Ananthanarayanan B, Kim Y, Kumar S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 2011;32(31):7913-23
  • Kwon H, Kim HJ, Rice WL, Development of an in vitro model to study the impact of BMP-2 on metastasis to bone. J Tissue Eng Regen Med 2010;4(8):590-9
  • Talukdar S, Mandal M, Hutmacher DW, Engineered silk fibroin protein 3D matrices for in vitro tumor model. Biomaterials 2011;32(8):2149-59
  • Tan PHS, Aung KZ, Toh SL, Three-dimensional porous silk tumor constructs in the approximation of in vivo osteosarcoma physiology. Biomaterials 2011;32(26):6131-7
  • Li Z, Zhang M. Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A 2005;75(2):485-93
  • Leung M, Kievit FM, Florczyk SJ, Chitosan-alginate scaffold culture system for hepatocellular carcinoma increases malignancy and drug resistance. Pharm Res 2010;27(9):1939-48
  • Kang SW, Bae YH. Cryopreservable and tumorigenic three-dimensional tumor culture in porous poly(lactic-co-glycolic acid) microsphere. Biomaterials 2009;30(25):4227-32
  • Horning JL, Sahoo SK, Vijayaraghavalu S, 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm 2008;5(5):849-62
  • Tang JH, Cui JF, Liu YK. Establishment of a HCC tissue-like spheroid model. Prog Biochem Biophys 2010;37(8):864-70
  • Blanco TM, Mantalaris A, Bismarck A, Panoskaltsis N. The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials 2010;31(8):2243-51
  • Ho WJ, Pham EA, Kim JW, Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci 2010;101(12):2637-43
  • Loessner D, Stok KS, Lutolf MP, Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010;31(32):8494-506
  • Yang Z, Zhao X. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomedicine 2011;6:303-10
  • Zhao X, Wu M, Yang Z, The 3-D culture and in vivo growth of the human hepatocellular carcinoma cell line HepG2 in a self-assembling peptide nanofiber scaffold. J Nanomat 2010; doi:10.1155/2010/437219
  • Müller-Ladner U, Pap T, Gay RE, Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol 2005;1(2):102-10
  • Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423(6937):356-61
  • Wang B, Wu Y, Shao Z, Functionalized self-assembling peptide nanofiber hydrogel as a scaffold for rabbit nucleus pulposus cells. J Biomed Mater Res A 2012;100 A(3):646-53
  • Ho RJY, Chien JY. Drug delivery trends in clinical trials and translational medicine: growth in biologic molecule development and impact on rheumatoid arthritis, crohn's disease, and colitis. J Pharm Sci 2012;101(8):2668-74
  • Amirghofran Z. Herbal medicines for immunosuppression. Iran J Allergy Asthma Immunol 2012;11(2):111-19
  • Lübke C, Ringe J, Krenn V, Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model. Osteoarthritis Cartilage 2005;13(6):478-87
  • Smolian H, Thiele S, Kolkenbrock H, Establishment of an in vitro model for rheumatoid arthritis as test system for therapeutical substances. ALTEX 2001;18(4):265-80
  • Andreas K, Lübke C, Häupl T, Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther 2008;10(1):R9
  • Andreas K, Häupl T, Lübke C, Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther 2009;11(1):R15
  • Clouet J, Vinatier C, Merceron C, From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today 2009;14(19-20):913-25
  • Chiang H, Jiang CC. Repair of articular cartilage defects: review and perspectives. J Formos Med Assoc 2009;108(2):87-101
  • Luyten FP, Vanlauwe J. Tissue engineering approaches for osteoarthritis. Bone 2012;51(2):289-96
  • Ringe J, Burmester GR, Sittinger M. Regenerative medicine in rheumatic disease-progress in tissue engineering. Nat Rev Rheumatol 2012;8(8):493-8
  • Sun L, Wang X, Kaplan DL. A 3D cartilage – inflammatory cell culture system for the modeling of human osteoarthritis. Biomaterials 2011;32(24):5581-9
  • Chang CW, Beland FA, Hines WM, Identification and categorization of liver toxicity markers induced by a related pair of drugs. Int J Mol Sci 2011;12(7):4609-24
  • Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 2005;4(6):489-99
  • Shukla SJ, Huang R, Austin CP, Xia M. The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today 2010;15(23-24):997-1007
  • Sun H, Xia M, Austin CP, Huang R. Paradigm shift in toxicity testing and modeling. AAPS J 2012;14(3):473-80
  • Astashkina A, Mann B, Grainger DW. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 2012;134(1):82-106
  • Lan S-F, Starly B. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities. Toxicol Appl Pharmacol 2011;256(1):62-72
  • MacDonald JS, Robertson RT. Toxicity testing in the 21st century: a view from the pharmaceutical industry. Toxicol Sci 2009;110(1):40-6
  • Anene-Nzelu C, Wang Y, Yu H, Liang LH. Liver tissue model for drug toxicity screening. J Mech Med Biol 2011;11(2):369-90
  • Gomez-Lechon MJ, Donato MT, Castell JV, Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 2003;4(4):292-312
  • Zuber R, Anzenbacherová E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med 2002;6(2):189-98
  • Garcia M, Rager J, Wang Q, Cryopreserved human hepatocytes as alternative in vitro model for cytochrome P450 induction studies. In Vitro Cell Dev Biol Anim 2003;39(7):283-7
  • Sinz M, Wallace G, Sahi J. Current industrial practices in assessing CYP450 enzyme induction: preclinical and clinical. AAPS J 2008;10(2):391-400
  • Dash A, Inman W, Hoffmaster K, Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 2009;5(10):1159-74
  • Lauer B, Tuschl G, Kling M, Mueller SO. Species-specific toxicity of diclofenac and troglitazone in primary human and rat hepatocytes. Chem Biol Interact 2009;179(1):17-24
  • Tuschl G, Hrach J, Walter Y, Serum-free collagen sandwich cultures of adult rat hepatocytes maintain liver-like properties long term: a valuable model for in vitro toxicity and drug-drug interaction studies. Chem Biol Interact 2009;181(1):124-37
  • Ansede JH, Smith WR, Perry CH, An in vitro assay to assess transporter-based cholestatic hepatotoxicity using sandwich-cultured rat hepatocytes. Drug Metab Dispos 2010;38(2):276-80
  • Bi YA, Kazolias D, Duignan DB. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 2006;34(9):1658-65
  • Marion TL, Leslie EM, Brouwer KLR. Use of sandwich-cultured hepatocytes to evaluate impaired bile acid transport as a mechanism of drug-induced hepatotoxicity. Mol Pharm 2007;4(6):911-18
  • Hewitt NJ, de Kanter R, LeCluyse E. Induction of drug metabolizing enzymes: a survey of in vitro methodologies and interpretations used in the pharmaceutical industry – do they comply with FDA recommendations? Chem Biol Interact 2007;168(1):51-65
  • Landry J, Bernier D, Ouellet C. Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol 1985;101(3):914-23
  • Abu-Absi SF, Friend JR, Hansen LK, Hu WS. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res 2002;274(1):56-67
  • Tzanakakis ES, Hsiao CC, Matsushita T, Probing enhanced cytochrome P450 2B1/2 activity in rat hepatocyte spheroids through confocal laser scanning microscopy. Cell Transplant 2001;10(3):329-42
  • Brandon EFA, Raap CD, Meijerman I, An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 2003;189(3):233-46
  • Hewitt NJ, Lechón MJG, Houston JB, Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 2007;39(1):159-234
  • Xia L, Sakban RB, Qu Y, Tethered spheroids as an in vitro hepatocyte model for drug safety screening. Biomaterials 2012;33(7):2165-76
  • Lee J, Cuddihy MJ, Cater GM, Kotov NA. Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials 2009;30(27):4687-94
  • Lee J, Lilly D, Doty C, In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009;5(10):1213-21
  • Nugraha B, Hong X, Mo X, Galactosylated cellulosic sponge for multi-well drug safety testing. Biomaterials 2011;32(29):6982-94
  • Matsui H, Takeuchi S, Osada T, Enhanced bile canaliculi formation enabling direct recovery of biliary metabolites of hepatocytes in 3D collagen gel microcavities. Lab Chip 2012;12(10):1857-64
  • Giri S, Acikgöz A, Pathak P, Three dimensional cultures of rat liver cells using a natural self-assembling nanoscaffold in a clinically relevant bioreactor for bioartificial liver construction. J Cell Physiol 2012;227(1):313-27
  • Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999;13(14):1883-900
  • Abu-Absi SF, Hansen LK, Hu WS. Three-dimensional co-culture of hepatocytes and stellate cells. Cytotechnology 2004;45(3):125-40
  • Uyama N, Shimahara Y, Kawada N, Regulation of cultured rat hepatocyte proliferation by stellate cells. J Hepatol 2002;36(5):590-9
  • Thomas RJ, Bhandari R, Barrett DA, The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro. Cells Tissues Organs 2006;181(2):67-79
  • Riccalton-Banks L, Liew C, Bhandari R, Long-term culture of functional liver tissue: three-dimensional coculture of primary hepatocytes and stellate cells. Tissue Eng 2003;9(3):401-10
  • Zinchenko YS, Schrum LW, Clemens M, Coger RN. Hepatocyte and kupffer cells co-cultured on micropatterned surfaces to optimize hepatocyte function. Tissue Eng 2006;12(4):751-61
  • Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006;26(10):1175-86
  • Hwa AJ, Fry RC, Sivaraman A, Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J 2007;21(10):2564-79
  • Leite SB, Teixeira AP, Miranda JP, Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: improved in vitro models for toxicological applications. Toxicol In Vitro 2011;25(4):825-32
  • Curcio E, Salerno S, Barbieri G, Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials 2007;28(36):5487-97
  • Cho CH, Park J, Nagrath D, Oxygen uptake rates and liver-specific functions of hepatocyte and 3T3 fibroblast co-cultures. Biotechnol Bioeng 2007;97(1):188-99
  • Miranda JP, Leite SB, Muller-Vieira U, Towards an extended functional hepatocyte in vitro culture. Tissue Eng C Methods 2009;15(2):157-67
  • Miranda JP, Rodrigues A, Tostões RM, Extending hepatocyte functionality for drug-testing applications using high-viscosity alginate-encapsulated three-dimensional cultures in bioreactors. Tissue Eng C Methods 2010;16(6):1223-32
  • Tostões RM, Leite SB, Miranda JP, Perfusion of 3D encapsulated hepatocytes-A synergistic effect enhancing long-term functionality in bioreactors. Biotechnol Bioeng 2011;108(1):41-9
  • Shvartsman I, Dvir T, Harel-Adar T, Cohen S. Perfusion cell seeding and cultivation induce the assembly of thick and functional hepatocellular tissue-like construct. Tissue Eng C Methods 2009;15(4):751-60
  • Powers MJ, Domansky K, Kaazempur-Mofrad MR, A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 2002;78(3):257-69
  • Powers MJ, Janigian DM, Wack KE, Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng 2002;8(3):499-513
  • Baudoin R, Corlu A, Griscom L, Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol In Vitro 2007;21(4):535-44
  • Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 2006;5(3):210-18
  • Toh YC, Zhang C, Zhang J, A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip Miniaturisat Chem Biol 2007;7(3):302-9
  • Toh YC, Lim TC, Tai D, A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip Miniaturisat Chem Biol 2009;9(14):2026-35
  • Yamada M, Utoh R, Ohashi K, Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 2012;33(33):8304-15
  • Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog 2004;20(2):590-7
  • Esch MB, Sung JH, Shuler ML. Promises, challenges and future directions of microCCAs. J Biotechnol 2010;148(1):64-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.