1,820
Views
132
CrossRef citations to date
0
Altmetric
Reviews

Paclitaxel drug delivery systems

, &
Pages 325-340 | Published online: 06 Jan 2013

Bibliography

  • Rowinsky EK. Clinical pharmacology of Taxol. J Natl Cancer Inst Monogr 1993;15:25-37
  • Wani MC, Taylor HL, Wall ME, Plant anti-tumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93:2325-7
  • Deconinck E, Sohier J, De Scheerder I. Pharmaceutical aspects of drug eluting stents. J Pharm Sci 2008;97:5047-60
  • Sonia M, Cusidó RM, Mirjalili MH, Production of the anticancer drug taxol in Taxus baccata suspension cultures. Process Biochem 2011;46:23-34
  • Guenard D, Gueritte-Voegelein F, Poiter P. Taxol and taxotere: discovery, chemistry and structure activity relationship. Acc Chem Res 1993;26:160-7
  • Sun L, Simmerling C, Ojima I. Recent advances in the study of the bioactive conformation of taxol. Chem Med Chem 2009;4:719-31
  • Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000;88:2619-28
  • Kingston DG. Recent advances in the chemistry of Taxol. J Nat Prod 2000;63:726-34
  • Nicolaou KC, Dai WM, Guy RK. Chemistry and biology of taxol. Angew Chem Int Ed Engl 1994;33:15-44
  • Van Zuylen L, Verweij J, Sparreboom A. Role of formulation vehicles in taxane pharmacology. Invest New Drugs 2001;19:125-41
  • Scripture CD, Figg WD, Sparreboom A. Paclitaxel chemotherapy: from empiricism to a mechanism-based formulation strategy. Ther Clin Risk Manag 2005;1:107-14
  • Paik PK, James LP, Riely GJ, A phase 2 study of weekly albumin-bound paclitaxel (Abraxane) given as a two-hour infusion. Cancer Chemother Pharmacol 2011;68:1331-7
  • Testa B. Prodrug research: futile or fertile? Biochem Pharmacol 2004;68:2097-106
  • Ettmayer P, Amidon G. L, Clement B, Lessons learned from marketed and investigational prodrugs. J Med Chem 2004;47:2393-404
  • Skwarczynski M, Hayashi Y, Kiso Y. Paclitaxel prodrugs: toward smarter delivery of anticancer agents. J Med Chem 2006;49:7253-69
  • Moktan S, Ryppa C, Kratz F, A thermally responsive biopolymer conjugated to an acid-sensitive derivative of paclitaxel stabilizes microtubules, arrests cell cycle, and induces apoptosis. Invest New Drugs 2012;30:236-48
  • Choi JS, Jo BW, Kim YC. Enhanced paclitaxel bioavailability after oral administration of pegylated paclitaxel prodrug for oral delivery in rats. Eur J Pharm Biopharm 2004;57:313-18
  • Buescher JM, Margaritis A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 2007;27:1-19
  • Langer CJ, O'Byrne KJ, Socinski MA, Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol 2008;3:623-30
  • Paz-Ares L, Ross H, O'Brien M, Phase III trial comparing paclitaxel poliglumex vs docetaxel in the second-line treatment of non-small-cell lung cancer. Br J Cancer 2008;98:1608-13
  • O'Brien ME, Socinski MA, Popovich AY, Randomized phase III trial comparing single-agent paclitaxel poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol 2008;3:728-34
  • Erez R, Segal E, Miller K, Enhanced cytotoxicity of a polymer-drug conjugate with triple payload of paclitaxel. Bioorg Med Chem 2009;17:4327-35
  • Wang Y, Xin D, Liu K, Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug Chem 2009;20:2214-21
  • Li GL, Liu JY, Pang Y, Polymeric micelles with water-insoluble drug as hydrophobic moiety for drug delivery. Biomacromolecules 2011;12(6):2016-26
  • Lim J, Lo ST, Hill S, Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol Pharm 2012;9:404-12
  • Lin YS, Tungpradit R, Sinchaikul S, Targeting the delivery of glycan-based paclitaxel prodrugs to cancer cells via glucose transporters. J Med Chem 2008;51:7428-41
  • Elsadek B, Graeser R, Esser N, Development of a novel prodrug of paclitaxel that is cleaved by prostate-specific antigen: An in vitro and in vivo evaluation study. Eur J Cancer 2010;46:3434‐4
  • Quiles S, Raisch KP, Sanford L, Synthesis and preliminary biological evaluation of high-drug-load paclitaxel-antibody conjugates for tumor-targeted chemotherapy. J Med Chem 2010;53:586-94
  • Eldar-Boock A, Miller K, Sanchis J, Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials 2011;32:3862-74
  • Shan L, Cui S, Du C, A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Biomaterials 2012;33:146-62
  • Homsi J, Bedikian AY, Kim KB, Phase 2 open-label study of weekly docosahexaenoic acid-paclitaxel in cutaneous and mucosal metastatic melanoma patients. Melanoma Res 2009;19:238-42
  • Bedikian AY, DeConti RC, Conry R, Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann Oncol 2011;22:787-93
  • Ke XY, Zhao BJ, Zhao X, The therapeutic efficacy of conjugated linoleic acid – paclitaxel on glioma in the rat. Biomaterials 2010;31:5855-64
  • Abu Ajaj K, Biniossek ML, Kratz F. Development of protein-binding bifunctional linkers for a new generation of dual-acting prodrugs. Bioconjug Chem 2009;20:390-6
  • Xiao H, Song H, Yang Q, A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials 2012;33:6507-19
  • Jones M, Leroux J. Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999;48:101-11
  • Wang F, Zhang D, Zhang Q, Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel-polymer micelles to overcome multi-drug resistance. Biomaterials 2011;32:9444-56
  • Soga O, van Nostrum CF, Fens M, Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release 2005;103:341-53
  • Lian H, Sun J, Yu YP, Supramolecular micellar nanoaggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery. Int J Nanomed 2011;6:3323-34
  • Hamaguchi T, Kato K, Yasui H, A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007;97:170-6
  • Kato K, Chin K, Yoshikawa T, Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 2012;30:1621-7
  • Negishi T, Koizumi F, Uchino H, NK105, a paclitaxel-incorporating micellar nanoparticle, is a more potent radiosensitising agent compared to free paclitaxel. Br J Cancer 2006;95:601-6
  • Hamaguchi T, Matsumura Y, Suzuki M, NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005;92:1240-6
  • Li H, Huo M, Zhou J, Enhanced oral absorption of paclitaxel in N-deoxycholic acid-N, O-hydroxyethyl chitosan micellar system. J Pharm Sci 2010;99:4543-53
  • Kim SC, Kim DW, Shim YH, In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 2001;72:191-202
  • Kim TY, Kim DW, Chung JY, Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004;10:3708-16
  • Lee SW, Yun MH, Jeong SW, Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system. J Control Release 2011;155:262-71
  • Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Del 2008;5:1003-25
  • Sharma A, Mayhew E, Bolcsak L, Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int J Cancer 1997;71:103-7
  • Erez R, Segal E, Miller K, Enhanced cytotoxicity of a polymer-drug conjugate with triple payload of paclitaxel. Bioorg Med Chem 2009;17:4327-35
  • Yang AZ, Li J, Xu HJ, A study on antitumor effect of liposome encapsulated paclitaxel in vivo and in vitro. Bull Chin Cancer 2006;15:862-4
  • Mehta RR, Burke TG. Membrane biophysical parameters influencing anthracycline action. Anthracycline antibiotics. In: Priebe W, editor. Anthracycline Antibiotics. New York: American Chemical Society Publication; 2004:222-40
  • Guo W, Johnson JL, Khan S, Paclitaxel quantification in mouse plasma and tissues containing liposome-entrapped paclitaxel by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetics study. Anal Biochem 2005;336:213-20
  • Fetterly GJ, Grasela TH, Sherman JW, Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin Cancer Res 2008;14:5856-63
  • Gregoriadis G. Liposome technology. Interactions of liposomes with the biological milieu. Volume 3 Informa Healthcare; London: 2007
  • Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 2012;7:49-60
  • Jain S, Kumar D, Swarnakar NK, Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials 2012;33:6758-68
  • Qi J, Lu Y, Wu W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr Drug Metab 2012;13:418-28
  • Yuan H, Miao J, Du YZ, Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm 2008;348:137-45
  • Lee MK, Lim SJ, Kim CK. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 2007;28:2137-46
  • Chen DB, Yang TZ, Lu WL. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 2001;49:1444-7
  • Dong XW, Mattingly CA, Tseng MT, Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 2009;69:3918-26
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004;99:259-69
  • Baek JS, So JW, Shin SC, Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-beta-cyclodextrin as an oral delivery system. Int J Mol Med 2012;30:953-9
  • Win KY, Feng SS. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials 2006;27:2285-91
  • Feng SS, Zhao L, Zhang Z. Chemotherapeutic engineering: vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo. Chem Eng Sci 2007;62:6641-8
  • Zhang ZP, Lee SH, Gan CW, In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res 2008;25:1925-35
  • Gan CW, Chien S, Feng SS. Enhancement of Chemotherapeutical Efficacy of Docetaxel by Using a Biodegradable Nanoparticle Formulation. Curr Pharm Des 2011;16:2308-20
  • Zhang ZP, Tan SW, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012;33:4889-906
  • Zhang ZP, Feng SS. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials 2006;27:262-70
  • Zhang ZP, Feng SS. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 2006;27:4025-33
  • Zhang ZP, Feng SS. Self-assembled nanoparticles of poly(lactide) – Vitamin E TPGS copolymers for oral chemotherapy. Int J Pharm 2006;324:191-8
  • Zhang ZP, Yang XL, Feng SS. Copolymer technology for advanced nanomedicine. Nanomedicine 2011;6:583-7
  • Zhao LY, Feng SS. Enhanced oral bioavailability of paclitaxel formulated in Vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci 2010;99:3552-60
  • Feng SS, Mei L, Anitha P, Poly(lactide) – vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials 2009;30:3297-306
  • Huang L, Chen H, Zheng Y, Nanoformulation of d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy. Integr Biol 2011;3:951-1054
  • Zhang Y, Tang L, Sun L, A novel paclitaxel-loaded poly (ε-caprolactone)/poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater 2010;6:2045-52
  • Mei L, Sun H, Jin X, Modified paclitaxel-loaded nanoparticles for inhibition of hyperplasia in a rabbit arterial balloon injury model. Pharm Res 2007;24:955-62
  • Pan J, Feng SS. Targeted delivery of paclitaxel using folate-decorated poly(lactide) vitamin E TPGS nanoparticles. Biomaterials 2008;29:2663-72
  • Liang C, Yang Y, Ling Y, Improved therapeutic effect of folate-decorated PLGA–PEG nanoparticles for endometrial carcinoma. Bioorg Med Chem 2011;19:4057-66
  • Biricova V, Laznickova A. Dendrimers: analytical characterization and applications V. Bioorg Chem 2009;37:185-92
  • Tomalia DA, Dewald JR. Dense star polymers having core, core branches, terminal groups. US4507466; 1985
  • Kesharwani P, Tekade RK, Gajbhiye V, Cancer targeting potential of some ligand-anchored poly(propylene imine dendrimers: a comparison. Nanomedicine 2011;7:295-304
  • Saad M, Garbuzenko OB, Ber E, Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release 2008;130:107-14
  • Ooya T, Lee J, Park K. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release 2003;93:121-7
  • Van der Hoeven BL, Pires NMM, Warda HM, Drug-eluting stents: results, promises and problems. Int J Cardiol 2005;99:9-17
  • Kivela A, Hartikainen J. Restenosis related to percutaneous coronary intervention has been solved? Ann Med 2006;38:173-87
  • Parry TJ, Brosius R, Thygarajan R, Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur J Pharm 2005;524:19-29
  • Luscher TF, Steffel J, Eberli FR, Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 2007;115:1051-8
  • Bege N, Steinmüller SO, Kalinowski M, Drug eluting stents based on Poly(ethylene carbonate): optimization of the stent coating process. Eur J Pharm Biopharm 2012;80:562-70
  • Feng SS, Zhao LY, Tang JT. Editorial: Nanomedicine for oral chemotherapy. Nanomedicine 2011;6:407-10
  • Abizaid A, Costa JR. New drug-eluting stents: an overview on biodegradable and polymer-free next-generation stent systems. Circ Cardiovasc Interv 2010;3:384-93
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002;54:3-12
  • Zhao L, Zhu L, Liu F, pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm 2011;410:83-91
  • Guo D, Xu CX, Quan JS, Synergistic anti-tumor activity of paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel in vitro and in vivo. Biomaterials 2009;30:4777-85
  • Bajaj G, Kim MR, Mohammed SI, Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release 2012;158:386-92
  • Qiao ZY, Zhang R, Du FS, Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release 2011;152:57-66
  • Liu YT, Li K, Liu B, Feng SS. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 2010;31:9145-55
  • Zhao J, Mi Y, Liu YT, Feng SS. Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 2012;33:1948-58
  • Mi Y, Liu XL, Zhao J, Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials 2012;33:7519-29

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.