952
Views
171
CrossRef citations to date
0
Altmetric
Reviews

Hyperthermia-induced drug targeting

&
Pages 511-527 | Published online: 07 Jan 2013

Bibliography

  • Grull H, Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 2012;161:317-27
  • Christophi C, Winkworth A, Muralihdaran V, The treatment of malignancy by hyperthermia. Surg Oncol 1999;7:83-90
  • Hildebrandt B, Wust P, Ahlers O, The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002;43:33-56
  • Bibi S, Lattmann E, Mohammed AR, Trigger release liposome systems: local and remote controlled delivery? J Microencapsul 2012;29:262-76
  • Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. Adv Mater 2010;22:4925-43
  • Bawa P, Pillay V, Choonara YE, Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009;4:022001
  • Landon C, Park CJ, Needham D, Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J 2011;3:38-64
  • Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 2000;174:323-31
  • Sapareto SA, Hopwood LE, Dewey WC, Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res 1978;38:393-400
  • McDannold NJ, King RL, Jolesz FA, Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 2000;216:517-23
  • Jones EL, Oleson JR, Prosnitz LR, Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 2005;23:3079-85
  • Vaupel P, Horsman MR. Tumour perfusion and associated physiology: characterization and significance for hyperthermia. Int J Hyperthermia 2010;26:209-10
  • Bull JM. An update on the anticancer effects of a combination of chemotherapy and hyperthermia. Cancer Res 1984;44:4853s-6s
  • Helbig D, Simon JC, Paasch U. Photodynamic therapy and the role of heat shock protein 70. Int J Hyperthermia 2011;27:802-10
  • Haveman J, Rietbroek RC, Geerdink A, Effect of hyperthermia on the cytotoxicity of 2',2'-difluorodeoxycytidine (gemcitabine) in cultured SW1573 cells. Int J Cancer 1995;62:627-30
  • Adachi S, Kokura S, Okayama T, Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int J Hyperthermia 2009;25:210-19
  • Ishikawa T, Kokura S, Sakamoto N, Phase II trial of combined regional hyperthermia and gemcitabine for locally advanced or metastatic pancreatic cancer. Int J Hyperthermia 2012;28:597-604
  • Hahn GM, Braun J, Har-Kedar I. Thermochemotherapy: synergism between hyperthermia (42-43 degrees) and adriamycin (of bleomycin) in mammalian cell inactivation. Proc Natl Acad Sci USA 1975;72:937-40
  • Herman TS. Temperature dependence of adriamycin, cis-diamminedichloroplatinum, bleomycin, and 1,3-bis(2-chloroethyl)-1-nitrosourea cytotoxicity in vitro. Cancer Res 1983;43:517-20
  • Nagaoka S, Kawasaki S, Karino Y, In vivo effects of hyperthermia on the cellular uptake of adriamycin. J Radiat Res 1987;28:262-7
  • Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 1999;15:79-107
  • Marmor JB. Interactions of hyperthermia and chemotherapy in animals. Cancer Res 1979;39:2269-76
  • de Bree E, Theodoropoulos PA, Rosing H, Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat Rev 2006;32:471-82
  • Horsman MR, Murata R, Overgaard J. Improving local tumor control by combining vascular targeting drugs, mild hyperthermia and radiation. Acta Oncol 2001;40:497-503
  • Issels RD, Lindner LH, Verweij J, Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 2010;11:561-70
  • Goldberg SN, Kamel IR, Kruskal JB, Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol 2002;179:93-101
  • Ahmed M, Monsky WE, Girnun G, Radiofrequency thermal ablation sharply increases intratumoral liposomal doxorubicin accumulation and tumor coagulation. Cancer Res 2003;63:6327-33
  • van Bree C, Krooshoop JJ, Rietbroek RC, Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res 1996;56:563-8
  • Huang SK, Stauffer PR, Hong K, Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 1994;54:2186-91
  • Gaber MH, Wu NZ, Hong K, Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 1996;36:1177-87
  • Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 2000;60:4440-5
  • Alvarez Secord A, Jones EL, Hahn CA, Phase I/II trial of intravenous Doxil and whole abdomen hyperthermia in patients with refractory ovarian cancer. Int J Hyperthermia 2005;21:333-47
  • Kouloulias VE, Dardoufas CE, Kouvaris JR, Liposomal doxorubicin in conjunction with reirradiation and local hyperthermia treatment in recurrent breast cancer: a phase I/II trial. Clin Cancer Res 2002;8:374-82
  • Vujaskovic Z, Kim DW, Jones E, A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer. Int J Hyperthermia 2010;26:514-21
  • Mirza AN, Fornage BD, Sneige N, Radiofrequency ablation of solid tumors. Cancer J 2001;7:95-102
  • Goldberg SN, Girnan GD, Lukyanov AN, Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiology 2002;222:797-804
  • Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 2008;5:1003-25
  • Andresen TL, Thompson DH, Kaasgaard T. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol Membr Biol 2010;27:353-63
  • Hafez IM, Cullis PR. Tunable pH-sensitive liposomes. Methods Enzymol 2004;387:113-34
  • Needham D, Park J-Y, Wright A, Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE–PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss 2013; In press
  • Wood BJ, Poon RT, Locklin JK, Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J Vasc Interv Radiol 2012;23:248-55. e7
  • Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother 2009;10:333-43
  • de Smet M, Heijman E, Langereis S, Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 2011;150:102-10
  • Dromi S, Frenkel V, Luk A, Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13:2722-7
  • Staruch R, Chopra R, Hynynen K. Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 2011;27:156-71
  • Yatvin MB, Weinstein JN, Dennis WH, Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978;202:1290-3
  • Weinstein JN, Magin RL, Yatvin MB, Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 1979;204:188-91
  • Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 1988;85:6949-53
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006;1:297-315
  • Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 2003;42:419-36
  • Harris L, Batist G, Belt R, Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 2002;94:25-36
  • Maruyama K, Unezaki S, Takahashi N, Enhanced delivery of doxorubicin to tumor by long-circulating thermosensitive liposomes and local hyperthermia. Biochim Biophys Acta 1993;1149:209-16
  • Unezaki S, Maruyama K, Takahashi N, Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm Res 1994;11:1180-5
  • Li L, ten Hagen TL, Schipper D, Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J Control Release 2010;143:274-9
  • Hossann M, Wiggenhorn M, Schwerdt A, In vitro stability and content release properties of phosphatidylglyceroglycerol containing thermosensitive liposomes. Biochim Biophys Acta 2007;1768:2491-9
  • Gaber MH, Hong K, Huang SK, Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res 1995;12:1407-16
  • Beck JG, Mathieu D, Loudet C, Plant sterols in "rafts": a better way to regulate membrane thermal shocks. FASEB J 2007;21:1714-23
  • Sandstrom MC, Ickenstein LM, Mayer LD, Effects of lipid segregation and lysolipid dissociation on drug release from thermosensitive liposomes. J Control Release 2005;107:131-42
  • Needham D, Anyarambhatla G, Kong G, A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 2000;60:1197-201
  • Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 2001;53:285-305
  • Mills JK, Needham D. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim Biophys Acta 2005;1716:77-96
  • Mills JK, Needham D. The materials engineering of temperature-sensitive liposomes. Methods Enzymol 2004;387:82-113
  • Needham D. Temperature-sensitive liposome formulation. WO065466A1; 1999
  • Yarmolenko PS, Zhao Y, Landon C, Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia 2010;26:485-98
  • Ponce AM, Vujaskovic Z, Yuan F, Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia 2006;22:205-13
  • Manzoor AA, Lindner LH, Landon CD, Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res 2012;72:5566-75
  • Kong G, Anyarambhatla G, Petros WP, Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 2000;60:6950-7
  • Chen Q, Krol A, Wright A, Tumor microvascular permeability is a key determinant for antivascular effects of doxorubicin encapsulated in a temperature sensitive liposome. Int J Hyperthermia 2008;24:475-82
  • Chen Q, Tong S, Dewhirst MW, Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol Cancer Ther 2004;3:1311-17
  • Szebeni J, Baranyi L, Savay S, The interaction of liposomes with the complement system: in vitro and in vivo assays. Methods Enzymol 2003;373:136-54
  • Hauck ML, LaRue SM, Petros WP, Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin Cancer Res 2006;12:4004-10
  • Banno B, Ickenstein LM, Chiu GN, The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J Pharm Sci 2010;99:2295-308
  • Hossann M, Syunyaeva Z, Schmidt R, Proteins and cholesterol lipid vesicles are mediators of drug release from thermosensitive liposomes. J Control Release 2012;162:400-6
  • Tagami T, Ernsting MJ, Li SD. Optimization of a novel and improved thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro system. J Control Release 2011;154:290-7
  • Tagami T, Ernsting MJ, Li SD. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release 2011;152:303-9
  • Lindner LH, Eichhorn ME, Eibl H, Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 2004;10:2168-78
  • Hossann M, Wang T, Wiggenhorn M, Size of thermosensitive liposomes influences content release. J Control Release 2010;147:436-43
  • Tagami T, Foltz WD, Ernsting MJ, MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 2011;32:6570-8
  • Li SD, Tagami T, Ernsting MJ. Thermosensitive liposomes. WO055020A1; 2012
  • Tagami T, May JP, Ernsting MJ, A thermosensitive liposome prepared with a Cu2+ gradient demonstrates improved pharmacokinetics, drug delivery and antitumor efficacy. J Control Release 2012;161:142-9
  • Dicko A, Tardi P, Xie X, Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int J Pharm 2007;337:219-28
  • May JP, Li SD. Thermosensitive liposomes in cancer therapy. Recent Patents Biomed Eng 2012;5:148-58
  • Dicheva BM, Hagen TL, Li L, Cationic thermosensitive liposomes: a novel dual targeted heat-triggered drug delivery approach for endothelial and tumor cells. Nano Lett 2012; [Epub ahead of print]
  • Available from: http://celsion.com/docs/pipeline_presentations
  • Available from: http://investor.celsion.com/releasedetail.cfm?ReleaseID=583432
  • Available from: http://investor.celsion.com/releasedetail.cfm?ReleaseID=698517
  • van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000;355:1119-25
  • Salomir R, Palussiere J, Fossheim SL, Local delivery of magnetic resonance (MR) contrast agent in kidney using thermosensitive liposomes and MR imaging-guided local hyperthermia: a feasibility study in vivo. J Magn Reson Imaging 2005;22:534-40
  • Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 2008;60:1193-208
  • Deckers R, Rome C, Moonen CT. The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging 2008;27:400-9
  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 2005;5:321-7
  • Clement GT. Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics 2004;42:1087-93
  • Hijnen NM, Heijman E, Kohler MO, Tumour hyperthermia and ablation in rats using a clinical MR-HIFU system equipped with a dedicated small animal set-up. Int J Hyperthermia 2012;28:141-55
  • Staruch R, Chopra R, Hynynen K. Hyperthermia in bone generated with MR imaging-controlled focused ultrasound: control strategies and drug delivery. Radiology 2012;263:117-27
  • Ranjan A, Jacobs GC, Woods DL, Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 2012;158:487-94
  • Fossheim SL, Fahlvik AK, Klaveness J, Paramagnetic liposomes as MRI contrast agents: influence of liposomal physicochemical properties on the in vitro relaxivity. Magn Reson Imaging 1999;17:83-9
  • Lindner LH, Reinl HM, Schlemmer M, Paramagnetic thermosensitive liposomes for MR-thermometry. Int J Hyperthermia 2005;21:575-88
  • Peller M, Schwerdt A, Hossann M, MR characterization of mild hyperthermia-induced gadodiamide release from thermosensitive liposomes in solid tumors. Invest Radiol 2008;43:877-92
  • Wang T, Hossann M, Reinl HM, In vitro characterization of phosphatidylglyceroglycerol-based thermosensitive liposomes with encapsulated 1H MR T1-shortening gadodiamide. Contrast Media Mol Imaging 2008;3:19-26
  • Chiu GN, Abraham SA, Ickenstein LM, Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release 2005;104:271-88
  • Viglianti BL, Abraham SA, Michelich CR, In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med 2004;51:1153-62
  • Ponce AM, Viglianti BL, Yu D, Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 2007;99:53-63
  • Negussie AH, Yarmolenko PS, Partanen A, Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia 2011;27:140-55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.