496
Views
65
CrossRef citations to date
0
Altmetric
Reviews

Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy

, , , &
Pages 1109-1122 | Published online: 22 Mar 2013

Bibliography

  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2(12):751-60
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7(9):771-82
  • Deng C, Jiang Y, Cheng R, et al. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 2012;7(5):467-80
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2012;12(1):39-50
  • Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004;91(10):1775-81
  • Kato K, Chin K, Yoshikawa T, et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drug 2012;30(4):1621-7
  • Hamaguchi T, Doi T, Eguchi-Nakajima T, et al. Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 2010;16(20):5058-66
  • Plummer R, Wilson RH, Calvert H, et al. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 2011;104(4):593-8
  • Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009;100(4):572-9
  • Kim T-Y, Kim D-W, Chung J-Y, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004;10(11):3708-16
  • Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006;3(1):139-62
  • Gaucher G, Marchessault RH, Leroux J-C. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 2010;143(1):2-12
  • Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm 2010;7(6):1913-20
  • Motornov M, Roiter Y, Tokarev I, et al. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 2010;35(1-2):174-211
  • Meng F, Cheng R, Deng C, et al. Intracellular drug release nanosystems. Mater Today 2012;15(10):436-42
  • Wei H, Zhuo R-X, Zhang X-Z. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci 2013;38(3-4):503-35
  • Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009;30(12):2180-98
  • Cheng R, Feng F, Meng F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011;152(1):2-12
  • McCarley RL. Redox-responsive delivery systems. Ann Rev Anal Chem 2012;5(1):391-411
  • Wu G, Fang Y-Z, Yang S, et al. Glutathione metabolism and its implications for health. J Nutr 2004;134(3):489-92
  • Kuppusamy P, Li H, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 2002;62(1):307-12
  • Sun HL, Guo BN, Cheng R, et al. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 2009;30(31):6358-66
  • Sun HL, Guo BN, Li XQ, et al. Shell-sheddable micelles based on dextran-SS-poly(ϵ-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules 2010;11(4):848-54
  • Wang W, Sun HL, Meng FH, et al. Precise control of intracellular drug release and anti-tumor activity of biodegradable micellar drugs via reduction-sensitive shell-shedding. Soft Matter 2012;8(14):3949-56
  • Tang L-Y, Wang Y-C, Li Y, et al. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjugate Chem 2009;20(6):1095-9
  • Wang Y-C, Wang F, Sun T-M, et al. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjugate Chem 2011;22(10):1939-45
  • Song N, Liu W, Tu Q, et al. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surf B 2011;87(2):454-63
  • Li X-Q, Wen H-Y, Dong H-Q, et al. Self-assembling nanomicelles of a novel camptothecin prodrug engineered with a redox-responsive release mechanism. Chem Commun 2011;47(30):8647-9
  • Khorsand Sourkohi B, Cunningham A, Zhang Q, et al. Biodegradable block copolymer micelles with thiol-responsive sheddable coronas. Biomacromolecules 2011;12(10):3819-25
  • Ren T-B, Xia W-J, Dong H-Q, et al. Sheddable micelles based on disulfide-linked hybrid PEG-polypeptide copolymer for intracellular drug delivery. Polymer (Guildf) 2011;52(16):3580-6
  • Wen H-Y, Dong H-Q, Xie W-J, et al. Rapidly disassembling nanomicelles with disulfide-linked PEG shells for glutathione-mediated intracellular drug delivery. Chem Commun 2011;47(12):3550-2
  • Thambi T, Yoon HY, Kim K, et al. Bioreducible block copolymers based on poly(ethylene glycol) and poly(gamma-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjugate Chem 2011;22(10):1924-31
  • Thambi T, Saravanakumar G, Chu J-U, et al. Synthesis and physicochemical characterization of reduction-sensitive block copolymer for intracellular delivery of doxorubicin. Macromol Res 2013;21(1):100-7
  • Guo Q, Luo P, Luo Y, et al. Fabrication of biodegradable micelles with sheddable poly(ethylene glycol) shells as the carrier of 7-ethyl-10-hydroxy-camptothecin. Colloids Surf B 2012;100(0):138-45
  • Chen W, Zhong P, Meng F, et al. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J Control Release 2013; Available from: http://dx.doi.org/10.1016/j.jconrel.2013.01.001
  • Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 2009;131(13):4830-8
  • Sun P, Zhou D, Gan Z. Novel reduction-sensitive micelles for triggered intracellular drug release. J Control Release 2011;155(1):96-103
  • Jiang X, Li L, Liu J, et al. Facile fabrication of thermo-responsive and reduction-sensitive polymeric micelles for anticancer drug delivery. Macromol Biosci 2012;12(5):703-11
  • Yuan L, Liu J, Wen J, et al. Self-assembly of a diblock copolymer with pendant disulfide bonds and chromophore groups: a new platform for fast release. Langmuir 2012;28(30):11232-40
  • van der Vlies AJ, Hasegawa U, Hubbell JA. Reduction-sensitive tioguanine prodrug micelles. Mol Pharm 2012;9(10):2812-18
  • Khorsand Sourkohi B, Schmidt R, Oh JK. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides. Macromol Rapid Commun 2011;32(20):1652-7
  • Nelson-Mendez A, Aleksanian S, Oh M, et al. Reductively degradable polyester-based block copolymers prepared by facile polycondensation and ATRP: synthesis, degradation, and aqueous micellization. Soft Matter 2011;7(16):7441-52
  • Han D, Tong X, Zhao Y. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 2012;28(5):2327-31
  • Tong R, Xia H, Lu X. Fast release behavior of block copolymer micelles under high intensity focused ultrasound/redox combined stimulus. J Mat Chem B 2013;1(6):886-94
  • Wang Y, Wu G, Li X, et al. Temperature-triggered redox-degradable poly(ether urethane) nanoparticles for controlled drug delivery. J Mater Chem 2012;22(48):25217-26
  • Ma N, Li Y, Xu H, et al. Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 2010;132(2):442-3
  • Ren T-B, Feng Y, Zhang Z-H, et al. Shell-sheddable micelles based on star-shaped poly(ϵ-caprolactone)-SS-poly(ethyl glycol) copolymer for intracellular drug release. Soft Matter 2011;7(6):2329-31
  • Liu D-L, Chang X, Dong C-M. Reduction- and thermo-sensitive star polypeptide micelles and hydrogels for on-demand drug delivery. Chem Commun 2013;49(12):1229-31
  • Liu J, Pang Y, Huang W, et al. Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery. Biomacromolecules 2011;12(5):1567-77
  • Liu J, Huang W, Pang Y, et al. Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy. Angew Chem Int Ed 2011;50(39):9162-6
  • Liu J, Pang Y, Huang W, et al. Redox-Responsive Polyphosphate Nanosized Assemblies: a Smart Drug Delivery Platform for Cancer Therapy. Biomacromolecules 2011;12(6):2407-15
  • Liu J, Pang Y, Chen J, et al. Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent. Biomaterials 2012;33(31):7765-74
  • Sun Y, Yan X, Yuan T, et al. Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials 2010;31(27):7124-31
  • Fan H, Huang J, Li Y, et al. Fabrication of reduction-degradable micelle based on disulfide-linked graft copolymer-camptothecin conjugate for enhancing solubility and stability of camptothecin. Polymer (Guildf) 2010;51(22):5107-14
  • Chen J, Zehtabi F, Ouyang J, et al. Reducible self-assembled micelles for enhanced intracellular delivery of doxorubicin. J Mater Chem 2012;22(15):7121-9
  • Chen J, Qiu X, Ouyang J, et al. pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromolecules 2011;12(10):3601-11
  • Ranucci E, Suardi MA, Annunziata R, et al. Poly(amidoamine) Conjugates with Disulfide-Linked Cholesterol Pendants Self-Assembling into Redox-Sensitive Nanoparticles. Biomacromolecules 2008;9(10):2693-704
  • Li J, Huo M, Wang J, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 2012;33(7):2310-20
  • Ryu J-H, Roy R, Ventura J, et al. Redox-sensitive disassembly of amphiphilic copolymer based micelles. Langmuir 2010;26(10):7086-92
  • Chen W, Shi Y, Feng H, et al. Preparation of copolymer paclitaxel covalently linked via a disulfide bond and its application on controlled drug delivery. J Phys Chem B 2012;116(30):9231-7
  • Zhang X, Du F, Huang J, et al. Fabrication of biodegradable micelles with reduction-triggered release of 6-mercaptopurine profile based on disulfide-linked graft copolymer conjugate. Colloids Surf B 2012;100(0):155-62
  • Moyuan C, Haixia J, Weijuan Y, et al. A convenient scheme for synthesizing reduction-sensitive chitosan-based amphiphilic copolymers for drug delivery. J Appl Polym Sci 2012;123(5):3137-44
  • Remant Bahadur KC, Thapa B, Xu P. pH and redox dual responsive nanoparticle for nuclear targeted drug delivery. Mol Pharm 2012;9(9):2719-29
  • Chen W, Zou Y, Jia J, et al. Functional Poly(ϵ-caprolactone)s via copolymerization of ϵ-caprolactone and pyridyl disulfide-containing cyclic carbonate: controlled synthesis and facile access to reduction-sensitive biodegradable graft copolymer micelles. Macromolecules 2013;46(3):699-707
  • van Nostrum CF. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter 2011;7(7):3246-59
  • Li Y-L, Zhu L, Liu Z, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem Int Ed 2009;48(52):9914-18
  • Wei R, Cheng L, Zheng M, et al. Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release. Biomacromolecules 2012;13(8):2429-38
  • Zhang J, Jiang X, Zhang Y, et al. Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules 2007;40(25):9125-32
  • Jiang X, Liu S, Narain R. Degradable thermoresponsive core cross-linked micelles: fabrication, surface functionalization, and biorecognition. Langmuir 2009;25(23):13344-50
  • Zhang L, Liu W, Lin L, et al. Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules 2008;9(11):3321-31
  • Jia Z, Wong L, Davis TP, et al. One-pot conversion of RAFT-generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid- and reductant-sensitive crosslinked micelles. Biomacromolecules 2008;9(11):3106-13
  • Wei C, Guo J, Wang C. Dual stimuli-responsive polymeric micelles exhibiting “AND” logic gate for controlled release of adriamycin. Macromol Rapid Commun 2011;32(5):451-5
  • Kim JO, Sahay G, Kabanov AV, et al. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents. Biomacromolecules 2010;11(4):919-26
  • Heffernan M, Murthy N. Disulfide-crosslinked polyion micelles for delivery of protein therapeutics. Ann Biomed Eng 2009;37(10):1993-2002
  • Li Y, Xiao K, Luo J, et al. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 2011;32(27):6633-45
  • Yan L, Wu W, Zhao W, et al. Reduction-sensitive core-cross-linked mPEG-poly(ester-carbonate) micelles for glutathione-triggered intracellular drug release. Poly Chem 2012;3(9):2403-12
  • Abdullah Al N, Lee H, Lee YS, et al. Development of disulfide core-crosslinked Pluronic nanoparticles as an effective anticancer-drug-delivery system. Macromol Biosci 2011;11(9):1264-71
  • Abdullah Al N, Nam J, Mok H, et al. Dual-responsive crosslinked Pluronic micelles as a carrier to deliver anticancer drug taxol. Macromol Res 2013;21(1):92-9
  • Zhang Z, Yin L, Tu C, et al. Redox-responsive, core cross-linked polyester micelles. ACS Macro Lett 2013;2(1):40-4
  • Wang Y, Du H, Gao L, et al. Reductively and hydrolytically dual degradable nanoparticles by "click" crosslinking of a multifunctional diblock copolymer. Poly Chem 2013;4(5):1657-63
  • Cajot S, Lautram N, Passirani C, et al. Design of reversibly core cross-linked micelles sensitive to reductive environment. J Control Release 2011;152(1):30-6
  • Koo AN, Lee HJ, Kim SE, et al. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun 2008;0(48):6570-2
  • Koo AN, Min KH, Lee HJ, et al. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links. Biomaterials 2012;33(5):1489-99
  • Jiang G, Wang Y, Zhang R, et al. Preparation of redox-sensitive shell cross-linked nanoparticles for controlled release of bioactive agents. ACS Macro Lett 2012;1(4):489-93
  • Yue J, Wang R, Liu S, et al. Reduction-responsive shell-crosslinked micelles prepared from Y-shaped amphiphilic block copolymers as a drug carrier. Soft Matter 2012;8(28):7426-35
  • Tao Y, Han J, Ye C, et al. Reduction-responsive gold-nanoparticle-conjugated Pluronic micelles: an effective anti-cancer drug delivery system. J Mater Chem 2012;22(36):18864-71
  • Zhang S, Zhao Y. Rapid release of entrapped contents from multi-functionalizable, surface cross-linked micelles upon different stimulation. J Am Chem Soc 2010;132(31):10642-4
  • Xu Y, Meng F, Cheng R, et al. Reduction-sensitive reversibly crosslinked biodegradable micelles for triggered release of doxorubicin. Macromol Biosci 2009;9(12):1254-61
  • Kim JE, Cha E-J, Ahn C-H. Reduction-sensitive self-aggregates as a novel delivery system. Macromol Chem Phys 2010;211(8):956-61
  • Lee S-Y, Kim S, Tyler JY, et al. Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. Biomaterials 2013;34(2):552-61
  • Wang K, Luo G-F, Liu Y, et al. Redox-sensitive shell cross-linked PEG-polypeptide hybrid micelles for controlled drug release. Poly Chem 2012;3(4):1084-90
  • Wang Y-C, Li Y, Sun T-M, et al. Core–shell–corona micelle stabilized by reversible cross-linkage for intracellular drug delivery. Macromol Rapid Commun 2010;31(13):1201-6
  • Dai J, Lin S, Cheng D, et al. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew Chem Int Ed 2011;50(40):9404-8
  • Xu X, Smith AE, McCormick CL. Facile 'one-pot' preparation of reversible, disulfide-containing shell cross-linked micelles from a RAFT-synthesized, pH-responsive triblock copolymer in water at room temperature. Aust J Chem 2009;62(11):1520-7
  • Son S, Namgung R, Kim J, et al. Bioreducible polymers for gene silencing and delivery. Accounts Chem Res 2012;45(7):1100-12
  • Cheng R, Meng F, Ma S, et al. Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. J Mater Chem 2011;21(47):19013-20
  • Zhang J, Wu L, Meng F, et al. pH and reduction dual-bioresponsive polymersomes for efficient intracellular protein delivery. Langmuir 2012;28(4):2056-65
  • Kim JO, Kabanov AV, Bronich TK. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release 2009;138(3):197-204
  • Yang C, Ebrahim Attia AB, Tan JPK, et al. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials 2012;33(10):2971-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.