758
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Strategies for triggered drug release from tumor targeted liposomes

, &
Pages 1399-1410 | Published online: 25 Jun 2013

Bibliography

  • Kwon IK, Lee SC, Han B, Park K. Analysis on the current status of targeted drug delivery to tumors. J Control Release 2012;164:108-14
  • Lim SB, Banerjee A, Onyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 2012;163:34-45
  • Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 2008;8:473-80
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148:135-46
  • Dufort S, Sancey L, Coll J-L. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev 2012;64:179-89
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63:136-51
  • Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009;66:2873-96
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37-44
  • Allen TM, Everest JM. Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats. J Pharmacol Exp Ther 1983;226:539-44
  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011;63:131-5
  • Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 2010;21:797-802
  • Allen TM, Hansen C, Rutledge J. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 1989;981:27-35
  • Allen TM, Hansen C, Martin F, et al. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991;1066:29-36
  • Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 1987;223:42-6
  • Milla P, Dosio F, Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 2012;13:105-19
  • Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1991;1068:133-41
  • Gabizon AA, Lyass O, Berry GJ, Wildgust M. Cardiac safety of pegylated liposomal doxorubicin (Doxil/Caelyx) demonstrated by endomyocardial biopsy in patients with advanced malignancies. Cancer Invest 2004;22:663-9
  • Barenholz YC. Doxil® - the first FDA-approved nano-drug: Lessons learned. J Control Release 2012;160:117-34
  • Zalba S, Garrido MJ. Liposomes, a promising strategy for clinical application of platinum derivatives. Expert Opin Drug Deliv 2013;10(6):829-44
  • Song G, Wu H, Yoshino K, Zamboni WC. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. J Liposome Res 2012;22:177-92
  • Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964;8:660-8
  • Mouritsen OG. Life — as a matter of fat. Springer-Verlag, Heidelberg, Germany; 2005
  • Frolov V, Shnyrova A V, Zimmerberg J. Lipid polymorphisms and membrane shape. Cold Spring Harb Perspect Biol 2011;3:a004747
  • Holland JW, Cullis PR, Madden TD. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids. Biochemistry 1996;35:2610-17
  • Fattal E, Couvreur P, Dubernet C. “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev 2004;56:931-46
  • Ellens H, Bentz J, Szoka FC. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 1984;23:1532-8
  • Düzgüneş N, Straubinger RM, Baldwin PA, et al. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry 1985;24:3091-8
  • Hope MJ, Walker DC, Cullis PR. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Biochem Biophys Res Commun 1983;110:15-22
  • Hafez IM, Cullis PR. Roles of lipid polymorphism in intracellular delivery. Adv Drug Deliv Rev 2001;47:139-48
  • Lindblom G, Orädd G. Lipid lateral diffusion and membrane heterogeneity. Biochim Biophys Acta 2009;1788:234-44
  • Kranenburg M, Smit B. Phase behavior of model lipid bilayers. J Phys Chem B 2005;109:6553-63
  • Mouritsen OG, Zuckermann MJ. What's so special about cholesterol? Lipids 2004;39:1101-13
  • Drummond DC, Noble CO, Hayes ME, et al. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci 2008;97:4696-740
  • Nagarajan R. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 2002;18:31-8
  • Høyrup P, Davidsen J, Jørgensen K. Lipid membrane partitioning of lysolipids and fatty acids: effects of membrane phase structure and detergent chain length §. J Phys Chem B 2001;105:2649-57
  • Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-9
  • Kim J, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006;66:8927-30
  • Casciari JJ, Sotirchos SV, Sutherland RM. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol 1992;151:386-94
  • Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release 2008;132:164-70
  • Volk T, Jähde E, Fortmeyer HP, et al. pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer 1993;68:492-500
  • Yatvin MB, Kreutz W, Horwitz BA, et al. pH-sensitive liposomes: possible clinical implications. Science 1980;210:1253-5
  • Connor J, Yatvin MB, Huang L. pH-sensitive liposomes: acid-induced liposome fusion. Proc Natl Acad Sci USA 1984;81:1715-18
  • Drummond DC, Zignani M, Leroux J. Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 2000;39:409-60
  • Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. J Control Release 2011;151:220-8
  • Guo X, Szoka FC. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG–diortho ester–lipid conjugate. Bioconjug Chem 2001;12:291-300
  • Guo X, MacKay JA, Szoka FC. Mechanism of pH-triggered collapse of phosphatidylethanolamine liposomes stabilized by an ortho ester polyethyleneglycol lipid. Biophys J 2003;84:1784-95
  • Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997;3:177-82
  • Bhujwalla ZM, Artemov D, Ballesteros P, et al. Combined vascular and extracellular pH imaging of solid tumors. NMR Biomed 2002;15:114-19
  • Yamashita S, Yamashita J, Sakamoto K, et al. Increased expression of membrane-associated phospholipase A2 shows malignant potential of human breast cancer cells. Cancer 1993;71:3058-64
  • Yamashita S, Yamashita J, Ogawa M. Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency. Br J Cancer 1994;69:1166-70
  • Abe T, Sakamoto K, Kamohara H, et al. Group II phospholipase A2 is increased in peritoneal and pleural effusions in patients with various types of cancer. Int J Cancer 1997;74:245-50
  • Kallajoki M, Alanen KA, Nevalainen M, Nevalainen TJ. Group II phospholipase A2 in human male reproductive organs and genital tumors. Prostate 1998;35:263-72
  • Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 2000;1488:1-19
  • Touqui L, Alaoui-El-Azher M. Mammalian secreted phospholipases A2 and their pathophysiological significance in inflammatory diseases. Curr Mol Med 2001;1:739-54
  • Anderson BO, Moore EE, Banerjee A. Phospholipase A2 regulates critical inflammatory mediators of multiple organ failure. J Surg Res 1994;56:199-205
  • Davidsen J, Vermehren C, Frokjaer S, et al. Drug delivery by phospholipase A(2) degradable liposomes. Int J Pharm 2001;214:67-9
  • Jørgensen K, Davidsen J, Mouritsen OG. Biophysical mechanisms of phospholipase A2 activation and their use in liposome-based drug delivery. FEBS Lett 2002;531:23-7
  • Davidsen J, Jørgensen K, Andresen TL, Mouritsen OG. Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue. Biochim Biophys Acta 2003;1609:95-101
  • Davidsen J, Mouritsen OG, Jørgensen K. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes. Biochim Biophys Acta 2002;1564:256-62
  • Burack WR, Yuan Q, Biltonen RL. Role of lateral phase separation in the modulation of phospholipase A2 activity. Biochemistry 1993;32:583-9
  • Hønger T, Jørgensen K, Biltonen RL, Mouritsen OG. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry 1996;35:9003-6
  • Mouritsen OG, Jørgensen K. Small-scale lipid-membrane structure: simulation versus experiment. Curr Opin Struct Biol 1997;7:518-27
  • Høyrup P, Mouritsen OG, Jørgensen K. Phospholipase A(2) activity towards vesicles of DPPC and DMPC-DSPC containing small amounts of SMPC. Biochim Biophys Acta 2001;1515:133-43
  • Jørgensen K, Vermehren C, Mouritsen OG. Enhancement of phospholipase A2 catalyzed degradation of polymer grafted PEG-liposomes: effects of lipopolymer-concentration and chain-length. Pharm Res 1999;16:1491-3
  • Andresen TL, Mouritsen OG, Begtrup M, Jørgensen K. Phospholipase A2 activity: dependence on liposome surface charge and polymer coverage. Biophys J 2002;82:148a
  • De Jonge MJA, Slingerland M, Loos WJ, et al. Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation. Eur J Cancer 2010;46:3016-21
  • Huang C, Li S. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Biochim Biophys Acta 1999;1422:273-307
  • Andresen TL, Davidsen J, Begtrup M, et al. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J Med Chem 2004;47:1694-703
  • Arouri A, Mouritsen OG. Anticancer double lipid prodrugs: liposomal preparation and characterization. J Liposome Res 2011;21:296-305
  • Arouri A, Mouritsen OG. Phospholipase A(2)-susceptible liposomes of anticancer double lipid-prodrugs. Eur J Pharm Sci 2012;45:408-20
  • Hub HH, Hupfer B, Koch H, Ringsdorf H. Polymerizable phospholipid analogues–new stable biomembrane and cell models. Angew Chem Int Ed Engl 1980;19:938-40
  • O'Brien DF, Whitesides TH, Klingbiel RT. The photopolymerization of lipid-diacetylenes in bimolecular-layer membranes. J Polym Sci Polym Phys Ed 1981;19:95-101
  • Regen SL, Singh A, Oehme G, Singh M. Polymerized phosphatidylcholine vesicles. Synthesis and characterization. J Am Chem Soc 1982;104:791-5
  • Lopez E, O'Brien DF, Whitesides TH. Effects of membrane composition and lipid structure on the photopolymerization of lipid diacetylenes in bilayer membranes. Biochim Biophys Acta 1982;693:437-43
  • Hupfer B, Ringsdorf H, Schupp H. Liposomes from polymerizable phospholipids. Chem Phys Lipids 1983;33:355-74
  • Patel GN, Witt JD, Khanna YP. Thermochromism in polydiacetylene solutions. J Polym Sci Polym Phys Ed 1980;18:1383-91
  • Gaub H, Sackmann E, Büschl R, Ringsdorf H. Lateral diffusion and phase separation in two-dimensional solutions of polymerized butadiene lipid in dimyristoylphosphatidylcholine bilayers. A photobleaching and freeze fracture study. Biophys J 1984;45:725-31
  • Tyminski PN, Ponticello IS, O'Brien DF. Polymerizable dienoyl lipids as spectroscopic bilayer membrane probes. J Am Chem Soc 1987;109:6541-2
  • Frankel D, Lamparski H. Photoinduced destabilization of bilayer vesicles. J Am Chem Soc 1989;111:9262-3
  • Lamparski H, Liman U, Barry JA, et al. Photoinduced destabilization of liposomes. Biochemistry 1992;31:685-94
  • Sells T, O'Brien D. Degree of polymerization in two-dimensional assemblies. Macromolecules 1991;24:336-7
  • Lei J, O'Brien DF. Two-dimensional polymerization of lipid bilayers: rate of polymerization of Acryloyl and Methacryloyl Lipids. Macromolecules 1994;27:1381-8
  • Lamparski H, O'Brien D. Two-dimensional polymerization of lipid bilayers: degree of polymerization of sorbyl lipids. Macromolecules 1995;28:1786-94
  • Sisson TM, Lamparski HG, Ko S, et al. Cross-Linking polymerizations in two-dimensional assemblies. Macromolecules 1996;29:8321-9
  • Bennett DE, O'Brien DF. Photoactivated enhancement of liposome fusion. Biochemistry 1995;34:3102-13
  • Clapp P, Armitage B, O'Brien D. Two-dimensional polymerization of lipid bilayers: visible-light-sensitized photoinitiation. Macromolecules 1997;30:32-41
  • Bondurant B, O'Brien DF. Photoinduced destabilization of sterically stabilized liposomes. J Am Chem Soc 1998;120:13541-2
  • Mueller A, Bondurant B, O'Brien DF. Visible-light-stimulated destabilization of PEG-Liposomes. Macromolecules 2000;33:4799-804
  • Yavlovich A, Singh A, Blumenthal R, Puri A. A novel class of photo-triggerable liposomes containing DPPC:DC(8,9)PC as vehicles for delivery of doxorubcin to cells. Biochim Biophys Acta 2011;1808:117-26
  • Lanks KW, Gao JP, Sharma T. Photodynamic enhancement of doxorubicin cytotoxicity. Cancer Chemother Pharmacol 1994;35:17-20
  • Gao JP, Lanks KW, Rosen M, Lai BT. Mechanism of action and spectrum of cell types susceptible to doxorubicin photochemotherapy. Cancer Chemother Pharmacol 1997;40:138-42
  • Idris NM, Gnanasammandhan MK, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 2012;18:1580-5
  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978;202:1290-3
  • Lefor AT, Makohon S, Ackerman NB. The effects of hyperthermia on vascular permeability in experimental liver metastasis. J Surg Oncol 1985;28:297-300
  • Cope DA, Dewhirst MW, Friedman HS, et al. Enhanced delivery of a monoclonal antibody F(ab')2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Res 1990;50:1803-9
  • Kong G, Dewhirst MW. Hyperthermia and liposomes. Int J Hyperthermia 1999;15:345-70
  • Grüll H, Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 2012;161:317-27
  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 2000;60:1197-201
  • Anyarambhatla GR, Needham D. Enhancement of the phase transition permeability of DPPC liposomes by incorporation of MPPC: a new temperature-sensitive liposome for use with mild hyperthermia. J Liposome Res 1999;9:491-506
  • Mills JK, Needham D. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim Biophys Acta 2005;1716:77-96
  • Landon CD, Park J-Y, Needham D, Dewhirst MW. Nanoscale Drug Delivery and Hyperthermia: the Materials Design and Preclinical and Clinical Testing of Low Temperature-Sensitive Liposomes Used in Combination with Mild Hyperthermia in the Treatment of Local Cancer. Open Nanomed J 2011;3:24-37
  • Yarmolenko PS, Zhao Y, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia 2010;26:485-98
  • Chen Q, Tong S, Dewhirst MW, Yuan F. Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol Cancer Ther 2004;3:1311-17
  • Lindner LH, Eichhorn ME, Eibl H, et al. Novel Temperature-Sensitive Liposomes with Prolonged Circulation Time Novel Temperature-Sensitive Liposomes with Prolonged Circulation Time. Clin Cancer Res 2004;10:2168-78
  • Tagami T, May JP, Ernsting MJ, Li S-D. A thermosensitive liposome prepared with a Cu2+ gradient demonstrates improved pharmacokinetics, drug delivery and antitumor efficacy. J Control Release 2012;161:142-9
  • Tagami T, Ernsting MJ, Li S-D. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release 2011;152:303-9
  • May JP, Li S. Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 2013;10:511-27
  • Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer. Future Oncol 2011;7:937-45
  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 2005;5:321-7
  • Frenkel V, Etherington A, Greene M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 2006;13:469-79
  • Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 2008;60:1193-208
  • Dromi S, Frenkel V, Luk A, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13:2722-7
  • Yudina A, Moonen C. Ultrasound-induced cell permeabilisation and hyperthermia: strategies for local delivery of compounds with intracellular mode of action. Int J Hyperthermia 2012;28:311-19
  • Cheong I, Huang X, Bettegowda C, et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science 2006;314:1308-11
  • Dang LH, Bettegowda C, Huso DL, et al. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA 2001;98:15155-60
  • Bettegowda C, Huang X, Lin J, et al. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol 2006;24:1573-80
  • Koçer A, Walko M, Meijberg W, Feringa BL. A light-actuated nanovalve derived from a channel protein. Science 2005;309:755-8
  • Koçer A, Walko M, Bulten E, et al. Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. Angew Chem Int Ed Engl 2006;45:3126-30
  • Koçer A. A remote controlled valve in liposomes for triggered liposomal release. J Liposome Res 2007;17:219-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.