628
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Properties, characteristics and applications of microbubbles for sonothrombolysis

, , &

Bibliography

  • Cosgrove D, Harvey C. Clinical uses of microbubbles in diagnosis and treatment. Med Biol Eng Comput 2009;47(8):813-26
  • Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 2004;3(6):527-32
  • Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 2007;9:415-47
  • Truelsen T, Begg S, Mathers C. The global burden of cerebrovascular disease. World Health Organization; Geneva, Switzerland; 2006
  • Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2:43-53
  • Rha J-H, Saver JL. The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 2007;38(3):967-73
  • American College of Emergency Physicians & American Academy of Neurology. Clinical policy: use of intravenous tPA for the management of acute ischemic stroke in the emergency department. Ann Emerg Med 2013(61):225-43
  • The National Institute of Neurological Disorders Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581-8
  • Barber PA, Zhang J, Demchuk AM, et al. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology 2001;56(8):1015-20
  • California Acute Stroke Pilot Registry Investigators. Prioritizing interventions to improve rates of thrombolysis for ischemic stroke. Neurology 2005;64(4):654-9
  • Xie F, Lof J, Everbach C, et al. Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles. JACC Cardiovasc Imaging 2009;2(4):511-18
  • Kutty S, Wu J, Hammel JM, et al. Microbubble mediated thrombus dissolution with diagnostic ultrasound for the treatment of chronic venous thrombi. PLoS One 2012;7(12):e51453
  • Culp WC, Porter TR, Xie F, et al. Microbubble potentiated ultrasound as a method of declotting thrombosed dialysis grafts: experimental study in dogs. Cardiovasc Intervent Radiol 2001;24(6):407-12
  • Truebestein G, Engel C, Etzel F, et al. Thrombolysis by ultrasound. Clin Sci Mol Med Suppl 1976;3:697s-8s
  • Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 1995;92(5):1148-50
  • Cintas P, Nguyen F, Boneu B, Larrue V. Enhancement of enzymatic fibrinolysis with 2-MHz ultrasound and microbubbles. J Thromb Haemostasis 2004;2(7):1163-6
  • Prokop AF, Soltani A, Roy RA. Cavitational mechanisms in ultrasound-accelerated fibrinolysis. Ultrasound Med Biol 2007;33(6):924-33
  • Datta S, Coussios C-C, Ammi AY, et al. Ultrasound-enhanced thrombolysis using Definity (R) as a cavitation nucleation agent. Ultrasound Med Biol 2008;34(9):1421-33
  • Porter TR, LeVeen RF, Fox R, et al. Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am Heart J 1996;132(5):964-8
  • Sutton JT, Ivancevich NM, Perrin SR Jr, et al. Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound Med Biol 2013;39(5):813-24
  • Kondo I, Mizushige K, Ueda T, et al. Histological observations and the process of ultrasound contrast agent enhancement of tissue plasminogen activator thrombolysis with ultrasound exposure. Jpn Circ J 1999;63(6):478-84
  • Petit B, Gaud E, Colevret D, et al. In vitro sonothrombolysis of human blood clots with BR38 microbubbles. Ultrasound Med Biol 2012;38(7):1222-33
  • Porter TR, Kricsfeld D, Lof J, et al. Effectiveness of transcranial and transthoracic ultrasound and microbubbles in dissolving intravascular thrombi. J Ultrasound Med 2001;20(12):1313-25
  • Shi WT, Powers JE, Klibanov AL, Hall CS. In vitro investigation of thrombosis dissolution with microbubble-induced continuous acoustic activities. Proc IEEE Ultrasonics Symp 2007;1985-8
  • Brown AT, Flores R, Hamilton E, et al. Microbubbles improve sonothrombolysis in vitro and decrease hemorrhage in vivo in a rabbit stroke model. Invest Radiol 2011;46(3):202-7
  • Culp WC, Flores R, Brown AT, et al. Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke. Stroke 2011;42(8):2280-5
  • Leeman JE, Kim JS, Chen X, et al. Effect of acoustic conditions on microbubble-mediated microvascular sonothrombolysis. Ultrasound Med Biol 2012;38(9):1589-98
  • Nedelmann M, Ritschel N, Doenges S, et al. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion. J Cereb Blood Flow Metab 2010;30(10):1712-20
  • Saqqur M, Tsivgoulis G, Nicoli F, et al. The role of sonolysis and sonothrombolysis in acute ischemic stroke: a systematic review and meta-analysis of randomized controlled trials and case-control studies. J Neuroimaging 2013; Epub ahead of print
  • Alexandrov A, Molina CA, Grotta JC, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004;351(21):2170-8
  • Viguier A, Petit R, Rigal M, et al. Continuous monitoring of middle cerebral artery recanalization with transcranial color-coded sonography and Levovist. J Thromb Thrombolysis 2005;19(1):55-9
  • Molina CA, Ribo M, Rubiera M, et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006;37(2):425-9
  • Perren F, Loulidi J, Poglia D. Microbubble potentiated transcranial duplex ultrasound enhances IV thrombolysis in acute stroke. J Thromb Thrombolysis 2008;25(2):219-23
  • Alexandrov AV, Mikulik R, Ribo M, et al. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke 2008;39(5):1464-9
  • Molina CA, Barreto AD, Tsivgoulis G, et al. Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial. Ann Neurol 2009;66(1):28-38
  • Stride E. Physical principles of microbubbles for ultrasound imaging and therapy. Cerebrovas Dis (Basel, Switzerland) 2009;27(Suppl 2):1-13
  • Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 2000;26(7):1153-60
  • Datta S, Coussios C-C, McAdory LE, et al. Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 2006;32(8):1257-67
  • Apfel RE. The role of impurities in cavitation-threshold determination. J Acoust Soc Am 1970;48(5):1179-86
  • Hitchcock KE, Ivancevich NM, Haworth KJ, et al. Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol 2011;37(8):1240-51
  • Kim JS, Leeman JE, Kagemann L, et al. Volumetric quantification of in vitro sonothrombolysis with microbubbles using high-resolution optical coherence tomography. J Biomed Opt 2012;17(7):070502
  • Sakharov DV, Hekkenberg RT, Rijken DC. Acceleration of fibrinolysis by high-frequency ultrasound: the contribution of acoustic streaming and temperature rise. Thromb Res 2000;100(4):333-40
  • Pfaffenberger S, Devcic-Kuhar B, El-Rabadi K, et al. 2MHz ultrasound enhances t-PA-mediated thrombolysis: comparison of continuous versus pulsed ultrasound and standing versus travelling acoustic waves. Thromb Haemost 2003;89(3):583-9
  • Weiss HL, Selvaraj P, Okita K, et al. Mechanical clot damage from cavitation during sonothrombolysis. J Acoust Soc Am 2013;133(5):3159-75
  • Hwang JH, Tu J, Brayman AA, et al. Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol 2006;32(10):1611-19
  • Yenari MA, Palmer JT, Bracci PM, Steinberg GK. Thrombolysis with tissue plasminogen activator (tPA) is temperature dependent. Thromb Res 1995;77(5):475-81
  • Blinc A, Francis CW, Trudnowski JL, Carstensen EL. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood 1993;81(10):2636-43
  • Francis CW, Onundarson PT, Carstensen EL, et al. Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 1992;90(5):2063-8
  • Soltani V, Hansmann DR. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis. Phys Med Biol 2008;53:6837-47
  • Chuang Y-H, Cheng P-W, Li P-C. Combining radiation force with cavitation for enhanced sonothrombolysis. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60(1):97-104
  • Acconcia C, Leung BYC, Hynynen K, Goertz DE. Interactions between ultrasound stimulated microbubbles and fibrin clots. Applied Physics Letters 2013;103:5
  • Suchkova V, Baggs R, Sahni SK, Francis CW. Ultrasound improves tissue perfusion in ischemic tissue through a nitric oxide dependent mechanism. Thromb Haemost 2002;88/5:865-70
  • Rubiera M, Ribo M, Delgado-Mederos R, et al. Do bubble characteristics affect recanalization in stroke patients treated with microbubble-enhanced sonothrombolysis? Ultrasound Med Biol 2008;34(10):1573-7
  • Xie F, Tsutsui JM, Lof J, et al. Effectiveness of lipid microbubbles and ultrasound in declotting thrombosis. Ultrasound Med Biol 2005;31(7):979-85
  • Nahirnyak V, Mast TD, Holland CK. Ultrasound-induced thermal elevation in clotted blood and cranial bone. Ultrasound Med Biol 2007;33(8):1285-95
  • Borrelli MJ, O'Brien J, William D, et al. Influences of microbubble diameter and ultrasonic parameters on in vitro sonothrombolysis efficacy. J Vasc Interv Radiol 2012;23(12):1677-84.e1
  • Owen J, Zhou B, Rademeyer P, et al. Understanding the structure and mechanism of formation of a new magnetic microbubble formulation. Theranostics 2012;2(12):1127-39
  • Saracco A, Aspelin P, Leifland K, et al. Bolus compared with continuous infusion of microbubble contrast agent using real-time contrast harmonic imaging ultrasound in breast tumors. Acta Radiologica 2009;50(8):854-9
  • Okada M, Hoffmann CW, Wolf KJ, Albrecht T. Bolus versus continuous infusion of microbubble contrast agent for liver US: initial experience. Radiology 2005;237(3):1063-7
  • Correas JM, Burns PN, Lai X, Qi X. Infusion versus bolus of an ultrasound contrast agent: in vivo dose-response measurements of BR1. Invest Radiol 2000;35(1):72-9
  • Wei K, Jayaweera AR, Firoozan S, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998;97(5):473-83
  • Weissman NJ, Cohen MC, Hack TC, et al. Infusion versus bolus contrast echocardiography: A multicenter, open-label, crossover trial. Am Heart J 2000;139(3):399-404
  • Xie F, Slikkerveer J, Gao S, et al. Coronary and microvascular thrombolysis with guided diagnostic ultrasound and microbubbles in acute ST segment elevation myocardial infarction. J Am Soc Echocardiogr 2011;24(12):1400-8
  • European Medical Agency. Sonovue: Summary of Product Characteristics. Product information 2006
  • Bokor D, Chambers JB, Rees PJ, et al. Clinical safety of SonoVue, a new contrast agent for ultrasound imaging, in healthy volunteers and in patients with chronic obstructive pulmonary disease. Invest Radiol 2001;36(2):104-9
  • Grayburn PA, Weiss JL, Hack TC, et al. Phase III multicenter trial comparing the efficacy of 2% dodecafluoropentane emulsion (EchoGen) and sonicated 5% human albumin (Albunex) as ultrasound contrast agents in patients with suboptimal echocardiograms. J Am Coll Cardiol 1998;32(1):230-6
  • Stride E, Saffari N. Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H 2003;217(6):429-47
  • Wright C, Hynynen K, Goertz D. In vitro and in vivo high-intensity focused ultrasound thrombolysis. Invest Radiol 2012;47(4):217-25
  • Maxwell AD, Cain CA, Duryea AP, et al. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy. Ultrasound Med Biol 2009;35(12):1982-94
  • Ariani M, Fishbein MC, Chae JS, et al. Dissolution of peripheral arterial thrombi by ultrasound. Circulation 1991;84(4):1680-8
  • Kent DM, Hinchey J, Price LL, et al. In acute ischemic stroke, are asymptomatic intracranial hemorrhages clinically innocuous? Stroke 2004;35(5):1141-6
  • The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 1997;28(11):2109-18
  • Wang X, Tsuji K, Lee S-R, et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke 2004;35(11 Suppl 1):2726-30
  • Daffertshofer M, Gass A, Ringleb P, et al. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke 2005;36(7):1441-6
  • Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators. Stroke 2000;31(4):811-16
  • Ammi AY, Mast TD, Huang I-H, et al. Characterization of ultrasound propagation through ex-vivo human temporal bone. Ultrasound Med Biol 2008;34(10):1578-89
  • Apfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 1991;17(2):179-85
  • Sponer J. Dependence of the cavitation threshold on the ultrasonic frequency. Czechoslovak J Phys 1990;40(10):1123-32
  • Reinhard M, Hetzel A, Kräger S, et al. Blood-brain barrier disruption by low-frequency ultrasound. Stroke 2006;37(6):1546-8
  • Wang Z, Moehring MA, Vom AH, Furuhata H. In vitro evaluation of dual mode ultrasonic thrombolysis method for transcranial application with an occlusive thrombosis model. Ultrasound Med Biol 2008;34(1):96-102
  • Baron C, Aubry J-Fo, Tanter M, et al. Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis. Ultrasound Med Biol 2009;35(7):1148-58
  • Meairs S, Alonso A, Hennerici MG. Progress in sonothrombolysis for the treatment of stroke. Stroke 2012;43(6):1706-10
  • Chen W-S, Brayman AA, Matula TJ, et al. The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound Med Biol 2003;29(5):739-48
  • Meunier JM, Holland CK, Lindsell CJ, Shaw GJ. Duty cycle dependence of ultrasound enhanced thrombolysis in a human clot model. Ultrasound Med Biol 2007;33(4):576-83
  • Frenkel V, Oberoi J, Stone MJ, et al. Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model. Radiology 2006;239(1):86-93
  • Tu J, Matula TJ, Brayman AA, Crum LA. Inertial cavitation dose produced in ex vivo rabbit ear arteries with Optison by 1-MHz pulsed ultrasound. Ultrasound Med Biol 2006;32(2):281-8
  • Schaefer S, Kliner S, Klinghammer L, et al. Influence of ultrasound operating parameters on ultrasound-induced thrombolysis in vitro. Ultrasound Med Biol 2005;31(6):841-7
  • Chomas JE, Dayton P, Allen J, et al. Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control 2001;48(1):232-48
  • Church CC. Frequency, pulse length, and the mechanical index. Acoust Res Lett Online 2005;6(3):162-8
  • O'Brien WD Jr. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 2007;93(1-3):212-55
  • Fowlkes JB, Crum LA. Cavitation threshold measurements for microsecond length pulses of ultrasound. J Acoust Soc Am 1988;83(6):2190-201
  • Tiukinhoy-Laing SD, Huang S, Klegerman M, et al. Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 2007;119(6):777-84
  • Chen W-S, Matula TJ, Brayman AA, Crum LA. A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. J Acoust Soc Am 2003;113(1):643-51
  • Smith DAB, Porter TM, Martinez J, et al. Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound. Ultrasound Med Biol 2007;33(5):797-809
  • Crum LA, Hansen GM. Growth of air bubbles in tissue by rectified diffusion. Phys Med Biol 1982;27(3):413-17
  • Church CC, O'Brien WD. Evaluation of the threshold for lung hemorrhage by diagnostic ultrasound and a proposed new safety index. Ultrasound Med Biol 2007;33(5):810-18
  • Ribo M, Molina C, Rubiera M, et al. Microcatheter-guided intra-clot administration of microbubbles during external continuous 2-MHz ultrasound insonation safely enhances thrombolysis in acute stroke. 2008 International stroke conference. Stroke 2008;39(2):595
  • Mizushige K, Kondo I, Ohmori K, et al. Enhancement of ultrasound-accelerated thrombolysis by echo contrast agents: dependence on microbubble structure. Ultrasound Med Biol 1999;25(9):1431-7
  • Dhond MR, Nguyen TT, Dolan C, et al. Ultrasound-enhanced thrombolysis at 20 kHz with air-filled and perfluorocarbon-filled contrast bispheres. J Am Soc Echocardiogr 2000;13(11):1025-9
  • Postema M, Bouakaz A, Chien Ting C, de Jong N. Optically observed microbubble coalescence and collapse. Volume 2, Ultrasonics Symposium, 2002, Proceedings 2002, IEEE 2002. p. 1949-52
  • Borden MA, Kruse DE, Caskey CF, et al. Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelectr Freq Control 2005;52(11):1992-2002
  • Culp WC, Porter TR, McCowan TC, et al. Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs. J Vasc Intervent Radiol 2003;14(3):343-7
  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352(16):1685–95
  • Wang X, Hagemeyer CE, Hohmann JD, et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation 2012;125(25):3117-26
  • Della Martina A, Allemann E, Bettinger T, et al. Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa - characterization and in vitro testing. Eur J Pharm Biopharm 2008;68(3):555-64.
  • Alonso A, Della Martina A, Stroick M, et al. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 2007;38(5):1508-14
  • Alonso A, Dempfle C-E, Della Martina A, et al. In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound. Thromb Res 2009;124(1):70-4
  • Mascelli MA, Lance ET, Damaraju L, et al. Pharmacodynamic profile of short-term abciximab treatment demonstrates prolonged platelet inhibition with gradual recovery from GP IIb/IIIa receptor blockade. Circulation 1998;97(17):1680-8
  • Chen S-C, Ruan J-L, Cheng P-W, et al. In vitro evaluation of ultrasound-assisted thrombolysis using a targeted ultrasound contrast agent. Ultrason Imaging 2009;31(4):235-46
  • Culp WC, Porter TR, Lowery J, et al. Intracranial clot lysis with intravenous microbubbles and transcranial ultrasound in swine. Stroke 2004;35(10):2407-11
  • Schumann PA, Christiansen JP, Quigley RM, et al. Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol 2002;37(11):587-93
  • Unger EC, McCreery TP, Sweitzer RH, et al. In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol 1998;81(12A):58G-61G
  • Wu YQ, Unger EC, McCreery TP, et al. Binding and lysing of blood clots using MRX-408. Invest Radiol 1998;33(12):880-5
  • Martin MJ, Chung EML, Goodall AH, et al. Enhanced detection of thromboemboli with the use of targeted microbubbles. Stroke 2007;38(10):2726-32
  • Xu W-M, Feng M, Zhao H-Y, et al. Preparation of thrombosis-targeted lipid microbubbles and determination of rabbit carotid artery thrombosis by microbubbles ultrasonogaphy. J Huazhong Univ Sci Technolog Med Sci 2013;33(1):146-52
  • Xie F, Lof J, Matsunaga T, et al. Diagnostic ultrasound combined with glycoprotein IIb/IIIa-targeted microbubbles improves microvascular recovery after acute coronary thrombotic occlusions. Circulation 2009;119(10):1378-85
  • Senyei A, Widder K, Czerlinski G. Magnetic guidance of drug-carrying microspheres. J Appl Phys 1978;49(6):3578-83
  • Lübbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4'-Epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996;56(20):4686-93
  • Rusetski AN, Ruuge EK. Magnetic fluid as a possible drug carrier for thrombosis treatment. J Magn Magn Mater 1990;85(1–3):299-302
  • Stride E, Porter C, Prieto AG, Pankhurst Q. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Ultrasound Med Biol 2009;35(5):861-8
  • Mulvana H, Eckersley RJ, Browning R, et al. Enhanced gene transfection in vivo using magnetic localisation of ultrasound contrast agents: preliminary results. Proc IEEE Ultrasonics Symp (IUS) 2010;670-3
  • Mannell H, Pircher J, Räthel T, et al. Targeted endothelial gene delivery by ultrasonic destruction of magnetic microbubbles carrying lentiviral vectors. Pharm Res 2012;29(5):1282-94
  • Huth S, Lausier J, Gersting SW, et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 2004;6(8):923-36
  • McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 2008;3(2):169-80
  • Owen J, Pankhurst Q, Stride E. Magnetic targeting and ultrasound mediated drug delivery: benefits, limitations and combination. Int J Hyperthermia 2012;28(4):362-73
  • Crake C, de Saint Victor M, Coviello C, et al. Passive acoustic mapping of magnetic microbubbles in an in vitro flow model. J Acoust Soc Am 2013;133(5(2)):3263
  • Cao Q, Han X, Li L. Enhancement of the efficiency of magnetic targeting for drug delivery: development and evaluation of magnet system. J Magn Magn Mater 2011;323(15):1919-24
  • Nishijima S, Mishima F, Tabata Y, et al. Research and development of magnetic drug delivery system using bulk high temperature superconducting magnet. Applied Superconductivity, IEEE Transactions on 2009;19(3):2257-60
  • Mangual JO, Li S, Ploehn HJ, et al. Biodegradable nanocomposite magnetite stent for implant-assisted magnetic drug targeting. J Magn Magn Mater 2010;322(20):3094-100
  • Pei N, Huang Z, Ma W, et al. In vitro study of deep capture of paramagnetic particle for targeting therapeutics. J Magn Magn Mater 2009;321(18):2911-15
  • Mishima F, Shin-Ichi T, Izumi Y, Nishijima S. Development of magnetic field control for magnetically targeted drug delivery system using a superconducting magnet. Applied Superconductivity, IEEE Transactions on 2007;17(2):2303-6
  • Shapiro B. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. J Magn Magn Mater 2009;321(10):1594-9
  • McBain SC, Griesenbach U, Xenariou S, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 2008;19(40):405102
  • Baruah DB, Dash RN, Chaudhari MR, Kadam SS. Plasminogen activators: a comparison. Vascul Pharmacol 2006;44(1):1-9
  • Lentacker I, De Smedt SC, Sanders NN. Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 2009;5:2161-70
  • Unger EC, Porter T, Culp W, et al. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004;56(9):1291-314
  • Margossian SS, Slayter HS, Kaczmarek E, McDonagh J. Physical characterization of recombinant tissue plasminogen activator. Biochim Biophys Acta 1993;1163(3):250-6
  • Hua X, Liu P, Gao Y-H, et al. Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J Thromb Thrombolysis 2010;30(1):29-35
  • Ren ST, Zhang H, Wang YW, et al. The preparation of a new self-made microbubble-loading urokinase and its thrombolysis combined with low-frequency ultrasound in vitro. Ultrasound Med Biol Ultrasound Med Biol 2011;37(11):1828-37
  • Mu Y, Li L, Ayoufu G. Experimental study of the preparation of targeted microbubble contrast agents carrying urokinase and RGDS. Ultrasonics 2009;49(8):676-81
  • Heeremans JL, Prevost R, Bekkers ME, et al. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA. Thromb Haemost 1995;73(3):488-94
  • Lentacker I, Geers B, Demeester J, et al. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther 2010;18(1):101-8
  • Shaw GJ, Meunier JM, Huang S-L, et al. Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 2009;124(3):306-10
  • Laing ST, Moody MR, Kim H, et al. Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb Res 2012;130(4):629-35
  • Tiukinhoy-Laing SD, Buchanan K, Parikh D, et al. Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Target 2007;15(2):109-14
  • Kaminski MD, Xie Y, Mertz CJ, et al. Encapsulation and release of plasminogen activator from biodegradable magnetic microcarriers. Eur J Pharm Sci 2008;35(1-2):96-103
  • Torno MD, Kaminski MD, Xie Y, et al. Improvement of in vitro thrombolysis employing magnetically-guided microspheres. Thromb Res 2008;121(6):799-811
  • Chen H, Kreider W, Brayman AA, et al Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 2011;106(3):034301
  • Hitchcock KE, Caudell DN, Sutton JT, et al. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model. J Control Release 2010;144(3):288-95
  • Gyongy M, Coussios C-C. Passive spatial mapping of inertial cavitation during hifu exposure. IEEE Transcations on Biomed Eng 2010;57(1):48-56
  • Gyongy M, Arora M, Noble JA, Coussios CC. Use of passive arrays for characterization and mapping of cavitation activity during HIFU exposure. Ultrason 2008;871-4
  • Haworth KJ, Mast TD, Radhakrishnan K, et al. Passive imaging with pulsed ultrasound insonations. J Acoust Soc Am 2012;132(1):544-53
  • Choi JJ, Coussios C-C. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure. J Acoust Soc Am 2012;132(5):3538-49
  • Arvanitis CD, Livingstone MS, McDannold N. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain. Phys Med Biol 2013;58(14):4749-61
  • Vignon F, Shi WT, Powers JE, et al. Microbubble cavitation imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60(4):661-70
  • Eggers J, König IR, Koch B, et al. Sonothrombolysis with transcranial color-coded sonography and recombinant tissue-type plasminogen activator in acute middle cerebral artery main stem occlusion results from a randomized study. Stroke 2008;39(5):1470-5
  • Školoudík D, Bar M, Skoda O, et al. Safety and efficacy of the sonographic acceleration of the middle cerebral artery recanalization: results of the pilot thrombotripsy study. Ultrasound Med Biol 2008;34(11):1775-82
  • Larrue V, Viguier A, Arnaud C, et al. Trancranial ultrasound combined with intravenous microbubbles and tissue plasminogen activator for acute ischemic stroke: a randomized controlled study. International Stroke Conference; 2007. Stroke 2007;38(2):472
  • Nicoli F, Squarcioni C, Grimaud L, et al. Microbubble administration during prolonged 2MHz TCD improves recanalization and long-term functional outcome in acute stroke patients treated with IV thrombolysis for isolated MCA M1 occlusion. 19th European Stroke Conference; 2010. Cerebrovasc Dis 2010;29(Suppl. 2):17
  • Dinia L, Rubiera M, Ribo M, et al. Reperfusion after stroke sonothrombolysis with microbubbles may predict intracranial bleeding. Neurology 2009;73(10):775-80
  • Pagola J, Ribo M, Alvarez-Sabín J, et al. Timing of recanalization after microbubble-enhanced intravenous thrombolysis in basilar artery occlusion. Stroke 2007;38(11):2931-4
  • Ribo M, Molina CA, Alvarez B, et al. Intra-arterial administration of microbubbles and continuous 2-MHz ultrasound insonation to enhance intra-arterial thrombolysis. J Neuroimaging 2010;20(3):224-7
  • Slikkerveer J, Kleijn SA, Appelman Y, et al. Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the Sonolysis study. Ultrasound Med Biol 2012;38(2):247-52
  • Šaňák D, Herzig R, Školoudík D, et al. The safety and efficacy of continuous transcranial duplex doppler monitoring of middle cerebral artery occlusion in acute stroke patients: comparison of TCDD and thrombolysis in MCA recanalization. J Neuroimaging 2010;20(1):58-63
  • Školoudík D, Fadrná T, Roubec M, et al. Changes in hemocoagulation in acute stroke patients after one-hour sono-thrombolysis using a diagnostic probe. Ultrasound Med Biol 2010;36(7):1052-9
  • Culp WC, Erdem E, Roberson PK, Husain MM. Microbubble potentiated ultrasound as a method of stroke therapy in a pig model: preliminary findings. J Vasc Intervent Radiol 2003;14(11):1433-6
  • Nishioka T, Luo H, Fishbein MC, et al. Dissolution of thrombotic arterial occlusion by high intensity, low frequency ultrasound and dodecafluoropentane emulsion: an in vitro and in vivo study. J Am Coll Cardiol 1997;30(2):561-8
  • Shi WT, Porter TR, Vignon F, et al. Investigation of image-guided sonothrombolysis in a porcine acute ischemic stroke model. IEEE International Ultrasonics Symposium 2011, p. 5-8
  • Vignon F, Shi W, Jinjin L, et al. In vivo microbubble cavitation imaging. IEEE International Ultrasonics Symposium 2011, p. 927-30
  • Flores R, Hennings LJ, Lowery JD, et al. Microbubble-augmented ultrasound sonothrombolysis decreases intracranial hemorrhage in a rabbit model of acute ischemic stroke. Invest Radiol 2011;46(7):419-24
  • Porter TR, Gao S, Shi W, et al. Utilization of diagnostic transtemporal guided high mechanical index ultrasound and a systemic microbubble infusion to treat ischemic stroke without fibrinolytic agents. J Am Coll Cardiol 2011;57(14, 1):E648
  • Luo H, Nishioka T, Bar-Cohen Y, et al. Transcutaneous ultrasound, low dose streptokinase and echogen are synergistic for the lysis of in vivo thrombotic occlusion. J Am Coll Cardiol 1997;478A-9A
  • Tsutsui JM, Xie F, Johanning J, et al. Treatment of deeply located acute intravascular thrombi with therapeutic ultrasound guided by diagnostic ultrasound and intravenous microbubbles. J Ultrasound Med 2006;25(9):1161-8
  • Birnbaum Y, Luo H, Nagai T, et al. Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 1998;97(2):130-4
  • Zhou XB, Qin H, Li J, et al. Platelet-targeted microbubbles inhibit re-occlusion after thrombolysis with transcutaneous ultrasound and microbubbles. Ultrasonics 2011;51(3):270-4
  • Fatar M, Stroick M, Griebe M. Effect of combined ultrasound and microbubbles treatment in an experimental model of cerebral ischemia. Ultrasound Med Biol 2008;34(9):1414-20
  • Stroick M, Alonso A, Fatar M, et al. Effects of simultaneous application of ultrasound and microbubbles on intracerebral hemorrhage in an animal model. Ultrasound Med Biol 2006;32(9):1377-82
  • Moumouh A, Barentin L, Tranquart F, et al. Fibrinolytic effects of transparietal ultrasound associated with intravenous infusion of an ultrasound contrast agent: study of a rat model of acute cerebral stroke. Ultrasound Med Biol 2010;36(1):51-7
  • Liu W-S, Huang Z-Z, Wang X-W, Zhou J. Effects of microbubbles on transcranial Doppler ultrasound-assisted intracranial urokinase thrombolysis. Thromb Res 2012;130(3):547-51
  • Kutty S, Xie F, Gao S, et al. Sonothrombolysis of intra-catheter aged venous thrombi using microbubble enhancement and guided three-dimensional ultrasound pulses. J Am Soc Echocardiogr 2010;23(9):1001-6
  • Hölscher T, Raman R, Ernstr K, et al. In vitro sonothrombolysis with duplex ultrasound: first results using a simplified model. Cerebrovasc Dis 2009;28(4):365-70
  • Chen W-S, Brayman AA, Matula TJ, Crum LA. Inertial cavitation dose and hemolysis produced in vitro with or without Optison. Ultrasound Med Biol 2003;29(5):725-37
  • Soltani A, Singhal R, Obtera M, et al. Potentiating intra-arterial sonothrombolysis for acute ischemic stroke by the addition of the ultrasound contrast agents (Optison (TM) & SonoVue (R)). J Thromb Thrombolysis 2011;31(1):71-84
  • Becker A, Marxer E, Bruessler J, et al. Ultrasound active nanoscaled lipid formulations for thrombus lysis. Eur J Pharm Biopharm 2011;77(3):424-9
  • Chuang Y-H, Cheng P-W, Chen S-C, et al. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis. Ultrason Imaging 2010;32(2):81-90
  • Jin H, Tan H, Zhao L, et al. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int J Pharm 2012;434(1-2):384-90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.