809
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Intranasal formulations: promising strategy to deliver vaccines

, PhD, , PhD, , Dipl-Biochem & , MD PhD

Bibliography

  • Smith KA. Edward jenner and the small pox vaccine. Front Immunol 2011;2:21
  • Keren DF, Collins HH, Gemski P, et al. Role of antigen form in development of mucosal immunoglobin A response to Shigella flexneri Antigens. Infect Immun 1981;31(3):1193-202
  • Harandi AM, Sanchez J, Eriksson K, Holmgren J. Recent developments in mucosal immunomodulatory adjuvants. Curr Opin Investig Drugs 2003;4(2):156-61
  • Poonam P. The biology of oral tolerance and issues related to oral vaccine design. Curr Pharm Des 2007;13(19):2001-7
  • Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011;19(10):1769-79
  • Barik S. Intranasal delivery of antiviral siRNA. Methods Mol Biol 2011;721:333-8
  • Wang BZ, Xu R, Quan FS, et al. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PLoS One 2010;5(11):e13972
  • Leitner VM, Guggi D, Krauland AH, Bernkop-Schnurch A. Nasal delivery of human growth hormone: in vitro and in vivo evaluation of a thiomer/glutathione microparticulate delivery system. J Control Release 2004;100(1):87-95
  • Sin B, Togias A. Pathophysiology of allergic and nonallergic rhinitis. Proc Am Thorac Soc 2011;8(1):106-14
  • KleinJan A. The crucial role of dendritic cells in rhinitis. Curr Opin Allergy Clin Immunol 2011;11(1):12-17
  • Beule AG. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr Top Otorhinolaryngol Head Neck Surg 2010;9:Doc07
  • Pires A, Fortuna A, Alves G, Falcao A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 2009;12(3):288-311
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006;6(2):148-58
  • Brandtzaeg P. Immune functions of nasopharyngeal lymphoid tissue. Adv Otorhinolaryngol 2011;72:20-4
  • Hellings P, Jorissen M, Ceuppens JL. The Waldeyer’s ring. Acta Otorhinolaryngol Belg 2000;54(3):237-41
  • Zaman M, Chandrudu S, Toth I. Strategies for intranasal delivery of vaccines. Drug Deliv Transl Res 2013;3(1):100-9
  • Fujimura Y. Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. Virchows Arch 2000;436(6):560-6
  • Kim SH, Jang YS. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Exp Mol Med 2014;46:e85
  • Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 2010;6(11):e1001147
  • Yamamoto M, Pascual DW, Kiyono H. M cell-targeted mucosal vaccine strategies. Curr Top Microbiol Immunol 2012;354:39-52
  • Stokes CR, Soothill JF, Turner MW. Immune exclusion is a function of IgA. Nature 1975;255(5511):745-6
  • Dunne PJ, Moran B, Cummins RC, Mills KH. CD11c+CD8alpha+ dendritic cells promote protective immunity to respiratory infection with Bordetella pertussis. J Immunol 2009;183(1):400-10
  • McGhee JR, Fujihashi K. Inside the mucosal immune system. PLoS Biol 2012;10(9):e1001397
  • Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu Rev Biomed Eng 2012;14:17-46
  • Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMist®; Fluenz): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 2011;71(12):1591-622
  • He XS, Holmes TH, Zhang C, et al. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 2006;80(23):11756-66
  • Dhere R, Yeolekar L, Kulkarni P, et al. A pandemic influenza vaccine in India: from strain to sale within 12 months. Vaccine 2011;29(Suppl 1):A16-21
  • Kulkarni PS, Raut SK, Dhere RM. A post-marketing surveillance study of a human live-virus pandemic influenza A (H1N1) vaccine (Nasovac (R)) in India. Hum Vaccin Immunother 2013;9(1):122-4
  • Carr S, Allison KJ, Van De Velde LA, et al. Safety and immunogenicity of live attenuated and inactivated influenza vaccines in children with cancer. J Infect Dis 2011;204(10):1475-82
  • Ramakrishnan A, Althoff KN, Lopez JA, et al. Differential serum cytokine responses to inactivated and live attenuated seasonal influenza vaccines. Cytokine 2012;60(3):661-6
  • Mutsch M, Zhou W, Rhodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 2004;350(9):896-903
  • Connell TD. Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines 2007;6(5):821-34
  • Hurwitz ES, Schonberger LB, Nelson DB, Holman RC. Guillain-Barre syndrome and the 1978-1979 influenza vaccine. N Engl J Med 1981;304(26):1557-61
  • Arnheim-Dahlstrom L, Hallgren J, Weibull CE, Sparen P. Risk of presentation to hospital with epileptic seizures after vaccination with monovalent AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine (Pandemrix): self controlled case series study. BMJ 2012;345:e7594
  • Miller E, Andrews N, Stellitano L, et al. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ 2013;346:f794
  • Lewis DJ, Huo Z, Barnett S, et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS ONE 2009;4(9):e6999
  • Belshe R, Lee MS, Walker RE, et al. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev Vaccines 2004;3(6):643-54
  • Bethell D, Saunders D, Jongkaewwattana A, et al. Evaluation of in vitro cross-reactivity to avian H5N1 and pandemic H1N1 2009 influenza following prime boost regimens of seasonal influenza vaccination in healthy human subjects: a randomised trial. PLoS One 2013;8(3):e59674
  • Ambrose CS, Wu X. The safety and effectiveness of self-administration of intranasal live attenuated influenza vaccine in adults. Vaccine 2013;31(6):857-60
  • Bernstein DI, Malkin E, Abughali N, et al. Phase 1 study of the safety and immunogenicity of a live, attenuated respiratory syncytial virus and parainfluenza virus type 3 vaccine in seronegative children. Pediatr Infect Dis J 2012;31(2):109-14
  • Thorstensson R, Trollfors B, Al-Tawil N, et al. A phase I clinical study of a live attenuated Bordetella pertussis vaccine--BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers. PLoS One 2014;9(1):e83449
  • Atmar RL, Bernstein DI, Harro CD, et al. Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med 2011;365(23):2178-87
  • Ramirez K, Wahid R, Richardson C, et al. Intranasal vaccination with an adjuvanted Norwalk virus-like particle vaccine elicits antigen-specific B memory responses in human adult volunteers. Clin Immunol 2012;144(2):98-108
  • Riddle MS, Kaminski RW, Williams C, et al. Safety and immunogenicity of an intranasal Shigella flexneri 2a Invaplex 50 vaccine. Vaccine 2011;29(40):7009-19
  • Leroux-Roels G, Maes C, Clement F, et al. Randomized Phase I: safety, Immunogenicity and Mucosal Antiviral Activity in Young Healthy Women Vaccinated with HIV-1 Gp41 P1 Peptide on Virosomes. PLoS One 2013;8(2):e55438
  • Riese P, Schulze K, Ebensen T, et al. Vaccine adjuvants: key tools for innovative vaccine design. Curr Top Med Chem 2013;13(20):2562-80
  • Buffa V, Klein K, Fischetti L, Shattock RJ. Evaluation of TLR agonists as potential mucosal adjuvants for HIV gp140 and tetanus toxoid in mice. PLoS One 2012;7(12):e50529
  • Hjelm BE, Kilbourne J, Herbst-Kralovetz MM. TLR7 and 9 agonists are highly effective mucosal adjuvants for norovirus virus-like particle vaccines. Hum Vaccin Immunother 2013;10:3
  • Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM. An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. Clin Vaccine Immunol 2010;17(12):1850-8
  • Razonable RR, Henault M, Paya CV. Stimulation of toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines. Toxicol Appl Pharmacol 2006;210(3):181-9
  • Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine 2011;29(17):3341-55
  • Pulendran B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol Rev 2004;199:227-50
  • Maroof A, Yorgensen YM, Li Y, Evans JT. Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection. PLoS Pathog 2014;10(1):e1003875
  • Shafique M, Meijerhof T, Wilschut J, de Haan A. Evaluation of an intranasal virosomal vaccine against respiratory syncytial virus in mice: effect of TLR2 and NOD2 ligands on induction of systemic and mucosal immune responses. PLoS One 2013;8(4):e61287
  • Cazorla SI, Frank FM, Becker PD, et al. Prime-boost immunization with cruzipain co-administered with MALP-2 triggers a protective immune response able to decrease parasite burden and tissue injury in an experimental Trypanosoma cruzi infection model. Vaccine 2008;26(16):1999-2009
  • Nakao R, Hasegawa H, Ochiai K, et al. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS One 2011;6(10):e26163
  • Hirano T, Kodama S, Kawano T, et al. Monophosphoryl lipid A induced innate immune responses via TLR4 to enhance clearance of nontypeable Haemophilus influenzae and Moraxella catarrhalis from the nasopharynx in mice. FEMS Immunol Med Microbiol 2011;63(3):407-17
  • Arias MA, Van Roey GA, Tregoning JS, et al. Glucopyranosyl Lipid Adjuvant (GLA), a Synthetic TLR4 agonist, promotes potent systemic and mucosal responses to intranasal immunization with HIVgp140. PLoS One 2012;7(7):e41144
  • Honko AN, Sriranganathan N, Lees CJ, Mizel SB. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 2006;74(2):1113-20
  • Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2014;9(2):237-51
  • Ko SY, Ko HJ, Chang WS, et al. alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol 2005;175(5):3309-17
  • Courtney AN, Thapa P, Singh S, et al. Intranasal but not intravenous delivery of the adjuvant alpha-galactosylceramide permits repeated stimulation of natural killer T cells in the lung. Eur J Immunol 2011;41(11):3312-22
  • Ebensen T, Link C, Riese P, et al. A pegylated derivative of alpha-galactosylceramide exhibits improved biological properties. J Immunol 2007;179(4):2065-73
  • Zygmunt BM, Rharbaoui F, Groebe L, Guzman CA. Intranasal immunization promotes th17 immune responses. J Immunol 2009;183(11):6933-8
  • Zygmunt BM, Weissmann SF, Guzman CA. NKT cell stimulation with alpha-galactosylceramide results in a block of Th17 differentiation after intranasal immunization in mice. PLoS ONE 2012;7(1):e30382
  • Sanchez J, Holmgren J. Cholera toxin - a foe & a friend. Indian J Med Res 2011;133:153-63
  • Gizurarson S, Tamura S, Aizawa C, Kurata T. Stimulation of the transepithelial flux of influenza HA vaccine by cholera toxin B subunit. Vaccine 1992;10(2):101-6
  • Jakobsen H, Bjarnarson S, Del Giudice G, et al. Intranasal immunization with pneumococcal conjugate vaccines with LT-K63, a nontoxic mutant of heat-Labile enterotoxin, as adjuvant rapidly induces protective immunity against lethal pneumococcal infections in neonatal mice. Infect Immun 2002;70(3):1443-52
  • Lycke N, Bemark M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol 2010;3(6):556-66
  • Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 1987;325(6101):279-81
  • Ebensen T, Libanova R, Schulze K, et al. Bis-(3’,5’)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 2011;29(32):5210-20
  • Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 2013;14(1):19-26
  • Karaolis DK, Newstead MW, Zeng X, et al. Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect Immun 2007;75(10):4942-50
  • Madhun AS, Haaheim LR, Nostbakken JK, et al. Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine induces multifunctional Th1 CD4+ cells and strong mucosal and systemic antibody responses in mice. Vaccine 2011;29(31):4973-82
  • Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013;13(6):397-411
  • Jain AK, Goyal AK, Gupta PN, et al. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release 2009;136(2):161-9
  • Tobio M, Gref R, Sanchez A, et al. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 1998;15(2):270-5
  • Jain AK, Goyal AK, Mishra N, et al. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm 2010;387(1-2):253-62
  • Zhang J, Xia W, Liu P, et al. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 2010;8(7):1962-87
  • Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vaccin Immunother 2013. [ Epub ahead of print]
  • Jabbal-Gill I, Watts P, Smith A. Chitosan-based delivery systems for mucosal vaccines. Expert Opin Drug Deliv 2012;9(9):1051-67
  • Boonyo W, Junginger HE, Waranuch N, et al. Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J Control Release 2007;121(3):168-75
  • Kobayashi T, Fukushima K, Sannan T, et al. Evaluation of the effectiveness and safety of chitosan derivatives as adjuvants for intranasal vaccines. Viral Immunol 2013;26(2):133-42
  • Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm 1999;182(1):21-32
  • Kang ML, Kang SG, Jiang HL, et al. In vivo induction of mucosal immune responses by intranasal administration of chitosan microspheres containing Bordetella bronchiseptica DNT. Eur J Pharm Biopharm 2006;63(2):215-20
  • Vicente S, Peleteiro M, Diaz-Freitas B, et al. Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: a needle-free vaccination strategy. J Control Release 2013;172(3):773-81
  • Vila A, Sanchez A, Janes K, et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 2004;57(1):123-31
  • Slutter B, Bal S, Keijzer C, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010;28(38):6282-91
  • Svindland SC, Pedersen GK, Pathirana RD, et al. A study of Chitosan and c-di-GMP as mucosal adjuvants for intranasal influenza H5N1 vaccine. Influenza Other Respir Viruses 2013;7(6):1181-93
  • Quinn KM, Yamamoto A, Costa A, et al. Coadministration of polyinosinic:polycytidylic acid and immunostimulatory complexes modifies antigen processing in dendritic cell subsets and enhances HIV gag-specific T cell immunity. J Immunol 2013;191(10):5085-96
  • Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine (Lond) 2012;7(12):1877-93
  • Foldvari M. Biphasic vesicles: a novel topical drug delivery system. J Biomed Nanotechnol 2010;6(5):543-57
  • Tseng LP, Chiou CJ, Chen CC, et al. Effect of lipopolysaccharide on intranasal administration of liposomal Newcastle disease virus vaccine to SPF chickens. Vet Immunol Immunopathol 2009;131(3-4):285-9
  • Huckriede A, Bungener L, Stegmann T, et al. The virosome concept for influenza vaccines. Vaccine 2005;23(Suppl 1):S26-38
  • Moser C, Muller M, Kaeser MD, et al. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines 2013;12(7):779-91
  • Hu KF, Lovgren-Bengtsson K, Morein B. Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv Drug Deliv Rev 2001;51(1-3):149-59
  • Eliasson DG, Helgeby A, Schon K, et al. A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine 2011;29(23):3951-61
  • Kim SH, Lee KY, Jang YS. Mucosal immune system and m cell-targeting strategies for oral mucosal vaccination. Immune Netw 2012;12(5):165-75
  • Gupta PN, Khatri K, Goyal AK, et al. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 2007;15(10):701-13
  • Kim SH, Jung DI, Yang IY, et al. M cells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery. Eur J Immunol 2011;41(11):3219-29
  • Lo DD, Ling J, Eckelhoefer AH. M cell targeting by a Claudin 4 targeting peptide can enhance mucosal IgA responses. BMC Biotechnol 2012;12:7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.