665
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity

, &

Bibliography

  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2(4):MR17-71
  • Puglia C, Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin Drug Deliv 2012;9(4):429-41
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008;3(2):133-49
  • Cetin M, Atila A, Kadioglu Y. Formulation and in vitro characterization of Eudragit(R) L100 and Eudragit(R) L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech 2010;11(3):1250-6
  • Malam Y, Lim EJ, Seifalian AM. Current trends in the application of nanoparticles in drug delivery. Curr Med Chem 2011;18(7):1067-78
  • Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012;41(7):2885-911
  • Mohanraj V, Chen Y. Nanoparticles – a review. Trop J Pharm Res 2006;5(1):561-73
  • Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012;14(2):282-95
  • Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 2012;5:87-100
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75(1):1-18
  • Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307(1):93-102
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55(3):329-47
  • Desai MP, Labhasetwar V, Amidon GL, et al. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996;13(12):1838-45
  • Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001;71(1):39-51
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010;145(3):182-95
  • Ravi Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004;25(10):1771-7
  • Liu Y, Tan J, Thomas A, et al. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 2012;3(2):181-94
  • Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2(4):249-55
  • Shinde Patil VR, Campbell CJ, Yun YH, et al. Particle diameter influences adhesion under flow. Biophys J 2001;80(4):1733-43
  • Rupp R, Rosenthal SL, Stanberry LR. VivaGel (SPL7013 Gel): a candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2007;2(4):561-6
  • Sahay G, Batrakova EV, Kabanov AV. Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport. Bioconjug Chem 2008;19(10):2023-9
  • Sahay G, Kim JO, Kabanov AV, et al. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials 2010;31(5):923-33
  • Crist RM, Grossman JH, Patri AK, et al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr Biol (Camb) 2013;5(1):66-73
  • Lu XY, Wu DC, Li ZJ, et al. Polymer nanoparticles. Prog Mol Biol Transl Sci 2011;104:299-323
  • Cho EJ, Holback H, Liu KC, et al. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 2013;10(6):2093-110
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target 2006;14(9):632-45
  • Cooper DL, Harirforoosh S. Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS One 2014;9(1):e87326
  • Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 2004;95(3):627-38
  • Henry CR. Morphology of supported nanoparticles. Prog Surf Sci 2005;80(3-4):92-116
  • Panyam J, Dali MM, Sahoo SK, et al. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release 2003;92(1-2):173-87
  • Fenart L, Casanova A, Dehouck B, et al. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 1999;291(3):1017-22
  • Sonaje K, Chuang EY, Lin KJ, et al. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol Pharm 2012;9(5):1271-9
  • Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 2012;9(9):2380-402
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009;30(11):592-9
  • Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 1995;70(2):95-111
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013;8(1):102
  • Martins S, Sarmento B, Ferreira DC, et al. Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. Int J Nanomedicine 2007;2(4):595-607
  • Huwyler J, Drewe J, Krahenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 2008;3(1):21-9
  • Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother 2002;49(Suppl 1):21-30
  • Mei L, Zhang Z, Zhao L, et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013;65(6):880-90
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161-77
  • Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001;47(2-3):165-96
  • Qi J, Lu Y, Wu W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr Drug Metab 2012;13(4):418-28
  • Neupane YR, Sabir MD, Ahmad N, et al. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology 2013;24(41):415102
  • Olbrich C, Gessner A, Schroder W, et al. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. J Control Release 2004;96(3):425-35
  • Pathak Y, Thassu D. Drug delivery, nanoparticles, formulation and characterization. In: Pathak Y, Thassu D, Swarbrick J, editors, Drugs and the pharmaceutical sciences. Informa Healthcare, NY, USA; 2009. p. 394
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161(2):505-22
  • Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9(4):325-41
  • Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008;97(9):3518-90
  • Murty SB, Wei Q, Thanoo BC, et al. In vivo release kinetics of octreotide acetate from experimental polymeric microsphere formulations using oil/water and oil/oil processes. AAPS PharmSciTech 2004;5(3):e49
  • Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: an updated review. Int J Pharm Investig 2012;2(1):2-11
  • Ferdous AJ, Stembridge NY, Singh M. Role of monensin PLGA polymer nanoparticles and liposomes as potentiator of ricin A immunotoxins in vitro. J Control Release 1998;50(1-3):71-8
  • Qin G, Li Z, Xia R, et al. Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery. Nanotechnology 2011;22(15):155605
  • Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005;10(1):35-43
  • Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86(3):215-23
  • Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA 2006;103(45):16649-54
  • Zhang X, Zhao J, Wen Y, et al. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery. Carbohydr Polym 2013;98(2):1326-34
  • McGowan I, Gomez K, Bruder K, et al. Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel) in sexually active young women (MTN-004). AIDS 2011;25(8):1057-64
  • Price CF, Tyssen D, Sonza S, et al. SPL7013 Gel (VivaGel(R)) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One 2011;6(9):e24095
  • Miller T, van Colen G, Sander B, et al. Drug loading of polymeric micelles. Pharm Res 2013;30(2):584-95
  • Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des 2006;12(36):4669-84
  • Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003;20(5):357-403
  • Feng L, Zhu C, Yuan H, et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 2013;42(16):6620-33
  • Feng X, Lv F, Liu L, et al. Conjugated polymer nanoparticles for drug delivery and imaging. Appl Mater Interfaces 2010;2(8):2429-35
  • Etrych T, Kovar L, Strohalm J, et al. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy. J Control Release 2011;154(3):241-8
  • Hovorka O, Etrych T, Subr V, et al. HPMA based macromolecular therapeutics: internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. J Drug Target 2006;14(6):391-403
  • Rihova B, Etrych T, Sirova M, et al. Synergistic action of doxorubicin bound to the polymeric carrier based on N-(2-hydroxypropyl)methacrylamide copolymers through an amide or hydrazone bond. Mol Pharm 2010;7(4):1027-40
  • Papasani MR, Wang G, Hill RA. Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine 2012;8(6):804-14
  • Cherukuri P, Curley SA. Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol Biol 2010;624:359-73
  • Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 2010;62(3):339-45
  • Ahmadi TS, Wang ZL, Green TC, et al. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996;272(5270):1924-6
  • Kim J, Takahashi M, Shimizu T, et al. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 2008;129(6):322-31
  • Sengupta P, Basu S, Soni S, et al. Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci USA 2012;109(28):11294-9
  • Sun C, Veiseh O, Gunn J, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 2008;4(3):372-9
  • Mody VV, Siwale R, Singh A, et al. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010;2(4):282-9
  • Zhang G, Ding L, Renegar R, et al. Hydroxycamptothecin-loaded Fe3O4 nanoparticles induce human lung cancer cell apoptosis through caspase-8 pathway activation and disrupt tight junctions. Cancer Sci 2011;102(6):1216-22
  • Cirillo G, Hampel S, Spizzirri UG, et al. Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. BioMed Res Int 2014;2014:825017
  • Mehra NK, Verma AK, Mishra PR, et al. The cancer targeting potential of d-alpha-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 2014;35(15):4573-88
  • Peng X, Zhuang Q, Peng D, et al. Sustained release of naproxen in a new kind delivery system of carbon nanotubes hydrogel. Iran J Pharm Res 2013;12(4):581-6
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538-44
  • Quantum dots: a quantum leap for animal models. Altern Lab Anim 2004;32(3):155
  • Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2007;2(2):129-41
  • Rajendran L, Knölker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 2010;9(1):29-42
  • Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 2006;7(8):1041-53
  • Desai NP, Trieu V, Hwang LY, et al. Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anticancer Drugs 2008;19(9):899-909
  • Kamei S, Inoue Y, Okada H, et al. New method for analysis of biodegradable polyesters by high-performance liquid chromatography after alkali hydrolysis. Biomaterials 1992;13(13):953-8
  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28(1):5-24
  • Tabata Y, Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J Biomed Mater Res 1988;22(10):837-58
  • Lin SY, Chen KS, Teng HH, et al. In vitro degradation and dissolution behaviours of microspheres prepared by three low molecular weight polyesters. J Microencapsul 2000;17(5):577-86
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012;64(6):557-70
  • Morgen M, Bloom C, Beyerinck R, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm Res 2012;29(2):427-40
  • Qu W, Li Y, Hovgaard L, et al. A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1. Int J Nanomedicine 2012;7:4983-94
  • Sun W, Mao S, Shi Y, et al. Nanonization of itraconazole by high pressure homogenization: stabilizer optimization and effect of particle size on oral absorption. J Pharm Sci 2011;100(8):3365-73
  • Dian L, Yang Z, Li F, et al. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine 2013;8:845-54
  • Wang Y, Li X, Wang L, et al. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int J Nanomedicine 2011;6:1497-507
  • Harsha S. Dual drug delivery system for targeting H. pylori in the stomach: preparation and in vitro characterization of amoxicillin-loaded Carbopol(R) nanospheres. Int J Nanomedicine 2012;7:4787-96
  • Nakarani M, Patel P, Patel J, et al. Cyclosporine a-nanosuspension: formulation, characterization and in vivo comparison with a marketed formulation. Sci Pharm 2010;78(2):345-61
  • Vishnu P, Roy V. Safety and efficacy of nab-paclitaxel in the treatment of patients with breast cancer. Breast Cancer 2011;5:53-65
  • Fanos V, Cataldi L. Amphotericin B-induced nephrotoxicity: a review. J Chemother 2000;12(6):463-70
  • Luber AD, Maa L, Lam M, et al. Risk factors for amphotericin B-induced nephrotoxicity. J Antimicrob Chemother 1999;43(2):267-71
  • Gardner ML, Godley PJ, Wasan SM. Sodium loading treatment for amphotericin B-induced nephrotoxicity. DICP 1990;24(10):940-6
  • Bagnis CI, Deray G. Amphotericin B nephrotoxicity. Saudi J Kidney Dis Transpl 2002;13(4):481-91
  • Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 1999;29(6):1402-7
  • Italia JL, Yahya MM, Singh D, et al. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res 2009;26(6):1324-31
  • Dorea EL, Yu L, De Castro I, et al. Nephrotoxicity of amphotericin B is attenuated by solubilizing with lipid emulsion. J Am Soc Nephrol 1997;8(9):1415-22
  • Hossain MA, Maesaki S, Razzaque MS, et al. Attenuation of nephrotoxicity by a novel lipid nanosphere (NS-718) incorporating amphotericin B. J Antimicrob Chemother 2000;46(2):263-8
  • Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 1986;11(4):257-82
  • Rybak MJ, Albrecht LM, Boike SC, et al. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 1990;25(4):679-87
  • Hodoshima N, Nakano Y, Izumi M, et al. Protective effect of inactive ingredients against nephrotoxicity of vancomycin hydrochloride in rats. Drug Metab Pharmacokinet 2004;19(1):68-75
  • Hodoshima N, Masuda S, Inui K. Decreased renal accumulation and toxicity of a new VCM formulation in rats with chronic renal failure. Drug Metab Pharmacokinet 2007;22(6):419-27
  • Yoon HE, Yang CW. Established and newly proposed mechanisms of chronic cyclosporine nephropathy. Korean J Intern Med 2009;24(2):81-92
  • Faulds D, Goa KL, Benfield P. Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs 1993;45(6):953-1040
  • Italia JL, Bhatt DK, Bhardwaj V, et al. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J Control Release 2007;119(2):197-206
  • Aliabadi HM, Brocks DR, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials 2005;26(35):7251-9
  • Aliabadi HM, Mahmud A, Sharifabadi AD, et al. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release 2005;104(2):301-11
  • Gonzalez-Lama Y, Gisbert JP, Mate J. The role of tacrolimus in inflammatory bowel disease: a systematic review. Dig Dis Sci 2006;51(10):1833-40
  • Meissner Y, Pellequer Y, Lamprecht A. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int J Pharm 2006;316(1-2):138-43
  • Tammam S, Mathur S, Afifi N. Preparation and biopharmaceutical evaluation of tacrolimus loaded biodegradable nanoparticles for liver targeting. J Biomed Nanotechnol 2012;8(3):439-49
  • Shin SB, Cho HY, Kim DD, et al. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm 2010;74(2):164-71
  • Tseng CL, Su WY, Yen KC, et al. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 2009;30(20):3476-85
  • Aryal S, Hu CM, Zhang L. Polymer – cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 2010;4(1):251-8
  • Liu G, Franssen E, Fitch MI, et al. Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol 1997;15(1):110-15
  • Mizumura Y, Matsumura Y, Hamaguchi T, et al. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn J Cancer Res 2001;92(3):328-36
  • Uchino H, Matsumura Y, Negishi T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 2005;93(6):678-87
  • Sung MJ, Kim DH, Jung YJ, et al. Genistein protects the kidney from cisplatin-induced injury. Kidney Int 2008;74(12):1538-47
  • Li Y, Li X, Wong YS, et al. The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 2011;32(34):9068-76
  • Jehn CF, Boulikas T, Kourvetaris A, et al. Pharmacokinetics of liposomal cisplatin (lipoplatin) in combination with 5-FU in patients with advanced head and neck cancer: first results of a phase III study. Anticancer Res 2007;27(1A):471-5
  • Aubel-Sadron G, Londos-Gagliardi D. Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review. Biochimie 1984;66(5):333-52
  • Shen J, He Q, Gao Y, et al. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale 2011;3(10):4314-22
  • Benival DM, Devarajan PV. Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. Int J Pharm 2012;423(2):554-61
  • Jain S, Patil SR, Swarnakar NK, et al. Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol Pharm 2012;9(9):2626-35
  • Kalaria DR, Sharma G, Beniwal V, et al. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res 2009;26(3):492-501
  • Liu D, Ge Y, Tang Y, et al. Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: preparation, characterization and in vitro studies. J Microencapsul 2010;27(8):726-34
  • Dehar N, Gupta A, Singh G. Comparative study of the ocular efficacy and safety of diclofenac sodium (0.1%) ophthalmic solution with that of ketorolac tromethamine (0.5%) ophthalmic solution in patients with acute seasonal allergic conjunctivitis. Int J Appl Basic Med Res 2012;2(1):25-30
  • Gavini E, Spada G, Rassu G, et al. Development of solid nanoparticles based on hydroxypropyl-beta-cyclodextrin aimed for the colonic transmucosal delivery of diclofenac sodium. J Pharm Pharmacol 2011;63(4):472-82
  • Manvelian G, Daniels S, Gibofsky A. A phase 2 study evaluating the efficacy and safety of a novel, proprietary, nano-formulated, lower dose oral diclofenac. Pain Med 2012;13(11):1491-8
  • Attama AA, Reichl S, Muller-Goymann CC. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 2008;355(1-2):307-13
  • Kumar R, Nagarwal RC, Dhanawat M, et al. In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles. J Biomed Nanotechnol 2011;7(3):325-33
  • Li NN, Zheng BN, Lin JT, et al. New heparin-indomethacin conjugate with an ester linkage: synthesis, self aggregation and drug delivery behavior. Mater Sci Eng C Mater Biol Appl 2014;34:229-35
  • Dogne JM, Hanson J, Supuran C, et al. Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 2006;12(8):971-5
  • Brater DC. Effects of nonsteroidal anti-inflammatory drugs on renal function: focus on cyclooxygenase-2-selective inhibition. Am J Med 1999;107(6A):65S-70S. discussion 70S-71S
  • Brune K, Hinz B. Selective cyclooxygenase-2 inhibitors: similarities and differences. Scand J Rheumatol 2004;33(1):1-6
  • Nguyen TH, Tan A, Santos L, et al. Silica-lipid hybrid (SLH) formulations enhance the oral bioavailability and efficacy of celecoxib: an in vivo evaluation. J Control Release 2013;167(1):85-91
  • Thakkar H, Kumar Sharma R, Murthy RS. Enhanced retention of celecoxib-loaded solid lipid nanoparticles after intra-articular administration. Drugs R D 2007;8(5):275-85
  • Shakeel F, Baboota S, Ahuja A, et al. Enhanced anti-inflammatory effects of celecoxib from a transdermally applied nanoemulsion. Pharmazie 2009;64(4):258-9
  • Venkatesan P, Puvvada N, Dash R, et al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 2011;32(15):3794-806
  • Zhao P, Jiang H, Jiang T, et al. Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy. Eur J Pharm Sci 2012;45(5):639-47
  • Kawai K, Larson BJ, Ishise H, et al. Calcium-based nanoparticles accelerate skin wound healing. PLoS One 2011;6(11):e27106
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3(8):711-15
  • Chen S, Pieper R, Webster DC, et al. Triblock copolymers: synthesis, characterization, and delivery of a model protein. Int J Pharm 2005;288(2):207-18
  • D’Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res 2006;23(3):460-74
  • Schwach G, Oudry N, Delhomme S, et al. Biodegradable microparticles for sustained release of a new GnRH antagonist–part I: screening commercial PLGA and formulation technologies. Eur J Pharm Biopharm 2003;56(3):327-36
  • Teutonico D, Montanari S, Ponchel G. Leuprolide acetate: pharmaceutical use and delivery potentials. Expert Opin Drug Deliv 2012;9(3):343-54
  • Chan JM, Zhang L, Yuet KP, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 2009;30(8):1627-34
  • Hempel G, Reinhardt D, Creutzig U, et al. Population pharmacokinetics of liposomal daunorubicin in children. Br J Clin Pharmacol 2003;56(4):370-7
  • Zhao Y, Alakhova DY, Kim JO, et al. A simple way to enhance Doxil(R) therapy: drug release from liposomes at the tumor site by amphiphilic block copolymer. J Control Release 2013;168(1):61-9
  • Lukas JC, Suarez AM, Valverde MP, et al. Time-dependent pharmacokinetics of cyclosporine (Neoral) in de novo renal transplant patients. J Clin Pharm Ther 2005;30(6):549-57
  • Junghanns JU, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 2008;3(3):295-309
  • Angi R, Solymosi T, Otvos Z, et al. Novel continuous flow technology for the development of a nanostructured Aprepitant formulation with improved pharmacokinetic properties. Eur J Pharm Biopharm 2014;86(3):361-8
  • Blau IW, Fauser AA. Review of comparative studies between conventional and liposomal amphotericin B (Ambisome) in neutropenic patients with fever of unknown origin and patients with systemic mycosis. Mycoses 2000;43(9-10):325-32
  • Mignani S, El Kazzouli S, Bousmina M, et al. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 2013;65(10):1316-30
  • Jaeckle KA, Batchelor T, O’Day SJ, et al. An open label trial of sustained-release cytarabine (DepoCyt) for the intrathecal treatment of solid tumor neoplastic meningitis. J Neurooncol 2002;57(3):231-9
  • Anders CK, Adamo B, Karginova O, et al. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One 2013;8(5):e61359
  • Zhang L, Gu FX, Chan JM, et al. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology and therapeutics 2008;83(5):761-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.