1,232
Views
46
CrossRef citations to date
0
Altmetric
Review

Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis – where do we stand?

, , , , , , & show all

Bibliography

  • Ratjen F, Doring G. Cystic fibrosis. Lancet 2003;361(9358):681-9
  • Cystic Fibrosis Foundation Patient Registry. 2012 Annual Data Report. Bethesda, Maryland: Cystic Fibrosis Foundation; 2013
  • LiPuma JJ. Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 2005;11(6):528-33
  • Ramsey BW, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011;365(18):1663-72
  • Davies JC, Wainwright CE, Canny GJ, et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med 2013;187(11):1219-25
  • Boyle MP, Bell SC, Konstan MW, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2014;2(7):527-38
  • Ratjen F, Comes G, Paul K, et al. Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr Pulmonol 2001;31(1):13-16
  • Mogayzel PJJr, Naureckas ET, Robinson KA, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2013;187(7):680-9
  • Doring G, Flume P, Heijerman H, Elborn JS. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros 2012;11(6):461-79
  • Smyth AR, Bell SC, Bojcin S, et al. European Cystic Fibrosis Society Standards of Care: best Practice guidelines. J Cyst Fibros 2014;13(Suppl 1):S23-42
  • Ryan G, Singh M, Dwan K. Inhaled antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev 2011(3):CD001021
  • Ramsey BW, Dorkin HL, Eisenberg JD, et al. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med 1993;328(24):1740-6
  • Sens B, Stern M. Hrsg Berichtsband Qualitätssicherung Mukoviszidose-Überblick über den Gesundheitszustand der Patienten in Deutschland 2009. Hippocampus Verlag KG, Bad-Honnef; 2010
  • Breen L, Aswani N. Elective versus symptomatic intravenous antibiotic therapy for cystic fibrosis. Cochrane Database Syst Rev 2012;7:CD002767
  • Hoiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010;35(4):322-32
  • Anzaudo MM, Busquets NP, Ronchi S, Mayoral C. [Isolated pathogen microorganisms in respiratory samples from children with cystic fibrosis]. Rev Argent Microbiol 2005;37(3):129-34
  • de Vrankrijker AM, Wolfs TF, van der Ent CK. Challenging and emerging pathogens in cystic fibrosis. Paediatr Respir Rev 2010;11(4):246-54
  • Fernandez Tena A, Casan Clara P. Deposition of inhaled particles in the lungs. Arch Bronconeumol 2012;48(7):240-6
  • Brand P, Schulte M, Wencker M, et al. Lung deposition of inhaled alpha1-proteinase inhibitor in cystic fibrosis and alpha1-antitrypsin deficiency. Eur Respir J 2009;34(2):354-60
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003;56(6):600-12
  • Pedersen S. Inspiratory Capacity through the Turbuhaler in Various Patient Groups. J Aerosol Med 1994;7:S55-8
  • Paranjpe M, Muller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 2014;15(4):5852-73
  • Labiris N, Dolovich M. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003;56(6):588-99
  • Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery. Science 1997;276(5320):1868-72
  • Ilowite JS, Gorvoy JD, Smaldone GC. Quantitative deposition of aerosolized gentamicin in cystic fibrosis. Am J Respir Crit Care Med 1987;136(6):1445-9
  • Foster W, Langenback E, Bergofsky E. Lung mucociliary function in man: interdependence of bronchial and tracheal mucus transport velocities with lung clearance in bronchial asthma and healthy subjects. Ann Occup Hyg 1982;26(2):227-44
  • Girod S, Zahm J, Plotkowski C, et al. Role of the physiochemical properties of mucus in the protection of the respiratory epithelium. Eur Respir J 1992;5(4):477-87
  • Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996;85(2):229-36
  • Robinson M, Bye PT. Mucociliary clearance in cystic fibrosis. Pediatr Pulmonol 2002;33(4):293-306
  • Isawa T, Teshima T, Hirano T, et al. Mucociliary clearance and transport in bronchiectasis: global and regional assessment. J Nucl Med 1990;31:543-8
  • Mazurek H, Chiron R, Kucerova T, et al. Long-term efficacy and safety of aerosolized tobramycin 300 mg/4 ml in cystic fibrosis. Pediatr Pulmonol 2014;49(11):1076-89
  • Aptalis Pharma, Inc. Announces Results of Phase 3 Studies of Aeroquin™ (Levofloxacin Solution for Inhalation) Among Patients With Cystic Fibrosis and Chronic Lung Infection. Bridgewater, NJ: Aptalis Pharma, Inc; 2013
  • Trapnell BC, McColley SA, Kissner DG, et al. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with pseudomonas airway infection. Am J Respir Crit Care Med 2012;185(2):171-8
  • Middleton PG, Kidd TJ, Williams B. Combination aerosol therapy to treat Burkholderia cepacia complex. Eur Respir J 2005;26(2):305-8
  • Konstan MW, Flume PA, Kappler M, et al. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cyst Fibros 2011;10(1):54-61
  • Healan AM, Gray W, Fuchs EJ, et al. Stability of colistimethate sodium in aqueous solution. Antimicrob Agents Chemother 2012;56(12):6432-3
  • Schuster A, Haliburn C, Doring G, Goldman MH. Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (Colobreathe DPI) in patients with cystic fibrosis: a randomised study. Thorax 2013;68(4):344-50
  • Conole D, Keating GM. Colistimethate sodium dry powder for inhalation: a review of its use in the treatment of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Drugs 2014;74(3):377-87
  • Goss CH, Muhlebach MS. Review: staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 2011;10(5):298-306
  • Serisier DJ, Bilton D, De Soyza A, et al. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax 2013;68(9):812-17
  • Meers P, Neville M, Malinin V, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother 2008;61(4):859-68
  • Dupont L, Minic P, Fustic S, et al. A randomized placebo-controlled study of nebulized liposomal amikacin (Arikace™) in the treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Cyst Fibros 2008;7:S26
  • Clancy J, Dupont L, Konstan M, et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax 2013;68(9):818-25
  • Weers J, Metzheiser B, Taylor G, et al. A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv 2009;22(2):131-8
  • Salama R. Controlled release pulmonary therapies: promises and concerns. American Pharmaceutical Review The Review of American Pharmaceutical Business & Technology 2013. Available From: https://apps.webofknowledge.com/InboundService.do?SID=V1UqAvGxvOyBGhkv5oI&product=WOS&UT=WOS%3A000327966300001&SrcApp=EndNote&DestFail=http%3A%2F%2Fwww.webofknowledge.com&Init=Yes&action=retrieve&SrcAuth=ResearchSoft&customersID=ResearchSoft&Func=Frame&IsProductCode=Yes&mode=FullRecord
  • d’Angelo I, Conte C, La Rotonda MI, et al. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev 2014;75C:92-111
  • Antimisiaris SG, Kallinteri P, Fatouros DG. Liposomes and drug delivery. Pharmaceutical manufacturing handbook. John Wiley & Sons, Inc, Hoboken, NJ, USA; 2007. p. 443-533
  • Swami A, Shi J, Gadde S, et al. Nanoparticles for targeted and temporally controlled drug delivery. In: Svenson S, Prud’homme RK, editors. Multifunctional nanoparticles for drug delivery applications. Springer; US: 2012. p. 9-29
  • Sachetelli S, Khalil H, Chen T, et al. Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim Biophys Acta 2000;15(2):254-66
  • Chono S, Suzuki H, Togami K, Morimoto K. Efficient drug delivery to lung epithelial lining fluid by aerosolization of ciprofloxacin incorporated into PEGylated liposomes for treatment of respiratory infections. Drug Dev Ind Pharm 2011;37(4):367-72
  • Chono S, Tanino T, Seki T, Morimoto K. Efficient drug delivery to alveolar macrophages and lung epithelial lining fluid following pulmonary administration of liposomal ciprofloxacin in rats with pneumonia and estimation of its antibacterial effects. Drug Dev Ind Pharm 2008;34(10):1090-6
  • Beaulac C, Clement-Major S, Hawari J, Lagacé J. Eradication of mucoid Pseudomonas aeruginosa with fluid liposome-encapsulated tobramycin in an animal model of chronic pulmonary infection. Antimicrob Agents Chemother 1996;40(3):665-9
  • Halwani M, Mugabe C, Azghani AO, et al. Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia. J Antimicrob Chemother 2007;60(4):760-9
  • Lagacé J, Dubreuil M, Montplaisir S. Liposome-encapsulated antibiotics: preparation, drug release and antimicrobial activity against Pseudomonas aeruginosa. J Microencapsul 1991;8(1):53-61
  • Mugabe C, Azghani AO, Omri A. Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother 2005;55(2):269-71
  • Mugabe C, Halwani M, Azghani AO, et al. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006;50(6):2016-22
  • Song Y, Salinas D, Nielson DW, Verkman AS. Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol 2006;290(3):C741-9
  • Klareskog L, Banck G, Forsgren A, Peterson PA. Binding of HLA antigen-containing liposomes to bacteria. Proc Natl Acad Sci USA 1978;75(12):6197-201
  • Robinson AM, Creeth JE, Jones MN. The specificity and affinity of immunoliposome targeting to oral bacteria. Biochim Biophys Acta 1998;1369(2):278-86
  • Chen CC, Feingold DS. Locus of divalent cation inhibition of the bactericidal action of polymyxin B. Antimicrob Agents Chemother 1972;2(5):331-5
  • Wallace SJ, Li J, Nation RL, et al. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation. J Pharm Sci 2012;101(9):3347-59
  • Ventura CA, Tommasini S, Crupi E, et al. Chitosan microspheres for intrapulmonary administration of moxifloxacin: interaction with biomembrane models and in vitro permeation studies. Eur J Pharm Biopharm 2008;68(2):235-44
  • Sweeney LG, Wang Z, Loebenberg R, et al. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. Int J Pharm 2005;305(1-2):180-5
  • Nacucchio MC, Bellora MJ, Sordelli DO, D’Aquino M. Enhanced liposome-mediated activity of piperacillin against staphylococci. Antimicrob Agents Chemother 1985;27(1):137-9
  • de Jesus Valle MJ, Gonzalez JG, Lopez FG, Navarro AS. Pulmonary disposition of vancomycin nebulized as lipid vesicles in rats. J Antibiot (Tokyo) 2013;66(8):447-51
  • Ungaro F, d’Angelo I, Coletta C, et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release 2012;157(1):149-59
  • Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 2008;5(6):629-39
  • Grund S, Bauer M, Fischer D. Polymers in drug delivery – state of the art and future trends. Adv Eng Mater 2011;13(3):B61-87
  • Nguyen J, Steele TW, Merkel O, et al. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Control Release 2008;132(3):243-51
  • Dailey LA, Kleemann E, Wittmar M, et al. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm Res 2003;20(12):2011-20
  • Dailey LA, Jekel N, Fink L, et al. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol 2006;215(1):100-8
  • Sanders NN, De Smedt SC, Van Rompaey E, et al. Cystic fibrosis sputum: a barrier to the transport of nanospheres. Am J Respir Crit Care Med 2000;162(5):1905-11
  • Suk JS, Lai SK, Wang YY, et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 2009;30(13):2591-7
  • Kirch J, Schneider A, Abou B, et al. Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. Proc Natl Acad Sci USA 2012;109(45):18355-60
  • Boat TF, Cheng PW. Biochemistry of airway mucus secretions. Fed Proc 1980;39(13):3067-74
  • Forier K, Messiaen AS, Raemdonck K, et al. Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine (Lond) 2013;8(6):935-49
  • Dawson M, Wirtz D, Hanes J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 2003;278(50):50393-401
  • Rillosi M, Buckton G. Modelling mucoadhesion by use of surface energy terms obtained from the Lewis acid-Lewis base approach. II. Studies on anionic, cationic, and unionisable polymers. Pharm Res 1995;12(5):669-75
  • Suk JS, Lai SK, Boylan NJ, et al. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine 2011;6(2):365-75
  • Fu J, Fiegel J, Krauland E, Hanes J. New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials 2002;23(22):4425-33
  • Vij N, Min T, Marasigan R, et al. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnology 2010;8:22
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61(2):158-71
  • Cu Y, Saltzman WM. Drug delivery: stealth particles give mucus the slip. Nat Mater 2009;8(1):11-13
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003;2(3):214-21
  • Miller JK, Neubig R, Clemons CB, et al. Nanoparticle deposition onto biofilms. Ann Biomed Eng 2013;41(1):53-67
  • Dailey L, Kleemann E, Wittmar M, et al. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm Res 2003;20(12):2011-20
  • Radovic-Moreno AF, Lu TK, Puscasu VA, et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 2012;6(5):4279-87
  • Ornelas-Megiatto C, Shah PN, Wich PR, et al. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes. Mol Pharm 2012;9(11):3012-22
  • Karathanasis E, Ayyagari AL, Bhavane R, et al. Preparation of in vivo cleavable agglomerated liposomes suitable for modulated pulmonary drug delivery. J Control Release 2005;103(1):159-75
  • Henke MO, Renner A, Huber RM, et al. MUC5AC and MUC5B Mucins Are Decreased in Cystic Fibrosis Airway Secretions. Am J Respir Cell Mol Biol 2004;31(1):86-91
  • Sham JO-H, Zhang Y, Finlay WH, et al. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm 2004;269(2):457-67
  • Leid JG, Willson CJ, Shirtliff ME, et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005;175(11):7512-18
  • Arnold MM, Gorman EM, Schieber LJ, et al. NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J Control Release 2007;121(1):100-9
  • Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater 2013;863951:11
  • Armijo LM, Brandt YI, Rivera AC, et al. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis. Proc. SPIE 8548, Nanosystems in Engineering and Medicine 2012;85480E:12
  • Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2007;2(8):495-9
  • Jakus A. Synthesis and Characterization of Multifunctional Magnetic Nanoparticles for Treatment of Cystic Fibrosis. NNIN REU Site: Materials Science and Engineering, Georgia Institute of Technology; 2008:18-19
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26(18):3995-4021
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012;64(5):1020-37
  • Leuba KD, Durmus NG, Taylor EN, Webster TJ. Short communication: carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomedicine 2013;8:731
  • Borcherding J, Baltrusaitis J, Chen H, et al. Iron oxide nanoparticles induce growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ Sci Nano 2014;1(2):123-32
  • Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater 2007;3(6):838-50
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012;30(10):499-511
  • Armijo LM, Kopciuch M, Olszówka Z, et al. Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy. Colloidal Nanoparticles for Biomedical Applications Proc. SPIE 8955 2014;89550I:12
  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 2011;112(4):2323-38
  • Billings N, Millan M, Caldara M, et al. The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013;9(8):e1003526
  • Shah SR, Henslee AM, Spicer PP, et al. Effects of antibiotic physicochemical properties on their release kinetics from biodegradable polymer microparticles. Pharm Res 2014;31(12):3379-89
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161(2):505-22
  • Kirch J, Guenther M, Doshi N, et al. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge – an ex vivo and in silico approach. J Control Release 2012;159(1):128-34
  • Braakhuis HM, Park MV, Gosens I, et al. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 2014;11:18
  • Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289(5):L698-708
  • Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res 2006;23(5):931-40
  • Omri A, Beaulac C, Bouhajib M, et al. Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother 1994;38(5):1090-5
  • Poyner E, Alpar H, Almeida A, et al. A comparative study on the pulmonary delivery of tobramycin encapsulated into liposomes and PLA microspheres following intravenous and endotracheal delivery. J Control Release 1995;35(1):41-8
  • Rukholm G, Mugabe C, Azghani AO, Omri A. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int J Antimicrob Agents 2006;27(3):247-52
  • Li Z, Zhang Y, Wurtz W, et al. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size. J Aerosol Med Pulm Drug Deliv 2008;21(3):245-54
  • Varshosaz J, Ghaffari S, Mirshojaei SF, et al. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. Biomed Res Int 2013;2013:136859
  • Chono S, Tanino T, Seki T, Morimoto K. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J Drug Target 2006;14(8):557-66
  • McAllister S, Alpar H, Brown M. Antimicrobial properties of liposomal polymyxin B. J Antimicrob Chemother 1999;43(2):203-10
  • Lawrence S, Alpar H, McAllister S, Brown M. Liposomal (MLV) Polymyxin B: physicochemical characterization and effect of surface charge on drug association. J Drug Target 1993;1(4):303-10
  • Arnold MM, Gorman EM, Schieber LJ, et al. NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J Control Release 2007;121(1-2):100-9
  • Martin-Banderas L, Holgado MA, Alvarez-Fuentes J, Fernandez-Arevalo M. Use of Flow Focusing(R) technology to produce tobramycin-loaded PLGA microparticles for pulmonary drug delivery. Med Chem 2012;8(4):533-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.