483
Views
38
CrossRef citations to date
0
Altmetric
Review

Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs

, , , , &

Bibliography

  • O’Driscoll CM, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility –the potential impact of lipid-based formulations. Adv Drug Deliv Rev 2008;60:617-24
  • Kaptay G. On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm 2012;430(1-2):253-7
  • Mennini N, Furlanetto S, Bragagni M, et al. Development of a chitosan-derivative micellar formulation to improve celecoxib solubility and bioavailability. Drug Dev Ind Pharm 2014;40(11):1494-502
  • Petkar KC, Chavhan SS, Agatonovik-Kustrin S, Sawant KK. Nanostructured materials in drug and gene delivery: a review of the state of the art. Crit Rev Ther Drug Carrier Syst 2011;28(2):101-4
  • Chen J, Lu WL, Gu W, et al. Drug-in-cyclodextrin-in-liposomes: a promising delivery system for hydrophobic drugs. Expert Opin Drug Deliv 2014;11(4):565-77
  • Nguyen A, Marsaud V, Bouclier C, et al. Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. Int J Pharm 2008;347:128-35
  • Sheihet L, Piotrowska K, Dubin RA, et al. Effect of tyrosine-derived triblock copolymer compositions on nanosphere self-assembly and drug delivery. Biomacromolecules 2007;8:998-1003
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007;24:1-16
  • Charman WN. Lipids, lipophilic drugs, and oral drug delivery–some emerging concepts. J Pharm Sci 2000;89(8):967-78
  • Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev 2001;50(1-2):61-80
  • Freitas C, Muller RH. Stability determination of solid lipid nanoparticles (SLN®) in aqueous dispersion after addition of11 electrolyte. J Microencapsul 1999;16(1):59-71
  • Manjunath K, Ready JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 2005;27(2):127-44
  • Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm 2013;453(1):215-24
  • Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002;242:121-8
  • Ribeiro de Souza AL, Kiill CP, dos Santos FK. Nanotechnology- based drug delivery systems for dermatomycosis treatment. Curr Nanosci 2012;8(4):512-19
  • Madni A, Sarfraz M, Rehman M, et al. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci 2014;17(3):401-26
  • Mozafari MR. Nanoliposomes: preparation and analysis. Methods Mol Biol 2010;605:29-50
  • Wang G, Wang JJ, Zhang LP, et al. Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin Drug Deliv 2012;9(6):599-613
  • Honda M, Asai T, Oku N, et al. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 2013;8:495-503
  • Gosangari SL, Watkin KL. Effect of preparation techniques on the properties of curcumin liposomes: characterization of size, release and cytotoxicity on a squamous oral carcinoma cell line. Pharm Dev Technol 2012;17(1):103-9
  • Sugahara KN, Teesalu T, Karmali P, et al. Coadministration of a tumor- penetrating peptide enhances the efficacy of cancer drugs. Science 2010;328:1031-5
  • Kizaka-Kondoh S, Kuchimaru T, Kadonosono T. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: hypoxia- inducible factor-1 (HIF-1)-active cells as a target for cancer therapy. J Pharmacol Sci 2011;115(4):440-5
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407(6801):249-57
  • Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Chem Biol 2010;188:759-68
  • Minko T, Rodriguez-Rodriguez L, Pozharov V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv Drug Deliv Rev 2013;65(13-14):1880-95
  • Schiffelers R, Storm G, Bakker-Woudenberg I. Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 2001;48(3):333-44
  • Szebeni J, Bedőcs P, Urbanics R, et al. Prevention of infusion reactions to PEGylated liposomal doxorubicin via tachyphylaxis induction by placebo vesicles: a porcine model. J Control Release 2012;160(2):382-7
  • Doppen AM, Anantha M, Cox KAK, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 2007;1768:1367-77
  • Wang LL, Li M, Zhang N. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy. Int J Nanomedicine 2012;7:3281-94
  • Yoshizawa Y, Kono Y, Ogawara K, et al. PEG liposo-malization of paclitaxel improved its in vivo disposition and anti-tumor effcacy. Int J Pharm 2011;412(1-2):132-41
  • Yu NY, Conway C, Pena RL, Chen JY. STEALTH liposomal CKD-602, a topoisomerase I inhibitor, improves the therapeutic index in human tumor xenograft models. Anticancer Res 2007;27(4B):2541-5
  • Kopecka J, Campia I, Olivero P. A LDL-masked liposomal-doxorubicin reverses drug resistance in human cancer cells. J Control Release 2011;149(2):196-205
  • Yang C, Liu HZ, Fu ZX. Effects of PEG-liposomal oxaliplatin on apoptosis, and expression of Cyclin A and Cyclin D1 in colorectal cancer cells. Oncol Rep 2012;28(3):1006-12
  • Yang C, Liu HZ, Lu WD, Fu ZX. PEG-liposomal oxaliplatin potentialization of antitumor effciency in a nude mouse tumor-xenograft model of colorectal carcinoma. Oncol Rep 2011;25(6):1621-8
  • Karanth H, Murthy RS. pH-sensitive liposomes-principle and application in cancer therapy. J Pharm Pharmacol 2007;59(4):469-83
  • Waite CL, Roth CM. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng 2012;40(1):21-41
  • Pozzi D, Colapicchioni V, Caracciolo G, et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 2014;6(5):2782-92
  • Allen TM, Cullis PR. Liposomal drug delivery systems:from concept to clinical applications. Adv Drug Deliv Rev 2013;65:36-48
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2:750-63
  • Dubey PK, Singodia D, Vyas SP. Liposomes modified with YIGSR peptide for tumor targeting. J Drug Target 2010;18(5):373-80
  • Shmeeda H, Tzemach D, Mak L, Gabizon A. Her2-targeted PEGylated liposomal doxorubicin: retention of target- specifc binding and cytotoxicity after in vivo passage. J Control Release 2009;136:155-60
  • Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 2010;197:3-53
  • Daniels TR, Bernabeu E, Rodriguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012;1820(3):291-317
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2012;42(3):1147-235
  • Ferreira Ddos S, Lopes SC, Franco MS, Oliveira MC. pH-sensitive liposomes for drug delivery in cancer treatment. Ther Deliv 2013;4(9):1099-123
  • Banerjee S, Sen K, Pal TK, Guha SK. Poly(styrene-co-maleic acid)-based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy. Int J Pharm 2012;436(1-2):786-97
  • Garg A, Kokkoli E. pH-Sensitive PEGylated liposomes functionalized with a fbronectin-mimetic peptide show enhanced intracellular delivery to colon cancer cell. Curr Pharm Biotechnol 2011;12(8):1135-43
  • Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J 2012;14:303-15
  • Koshkaryev A, Sawant R, Deshpande M, Torchilin V. Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv Drug Deliv Rev 2013;65:24-35
  • Metselaar JM, Storm G. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv 2005;2:465-76
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003;42:463-78
  • Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int J Nanomedicine 2007;2(4):595-607
  • Heilmann RM, Grellet A, Allenspach K, et al. Association between fecal S100A12 concentration and histologic, endoscopic, and clinical disease severity in dogs with idiopathic inflammatory bowel disease. Vet Immunol Immunopathol 2014;158(3-4):156-66
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Euro J Pharm Biopharm 2000;50:47-60
  • Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity - in vivo study. Eur J Pharm Biopharm 2003;56(1):67-72
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001;47(2–3):165-96
  • Sagalowicz L, Leser ME. Delivery systems for liquid food products. Curr Opin Colloid and Interface Sci 2010;15:61-72
  • de Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008;3(2):133-49
  • Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011;12(1):62-76
  • Bondi ML, Fontana G, Carlisi B, Giammona G. Preparation and characterization of solid lipid nanoparticles containing cloricromene. Drug Deliv 2003;10(4):245-50
  • Yuan H, Chen J, Du YZ, et al. Studies on oral absorption of stearic acid SLN by a novel fuorometric method. Colloids Surf B Biointerfaces 2007;58:157-64
  • Wong HL, Bendayan R, Rauth AM, et al. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007;59:491-504
  • Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 2009;5:184-91
  • Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev 2011;63:901-8
  • Videira M, Almeida AJ, Fabra A. Preclinical evaluation of a pulmonary delivered paclitaxel- loaded lipid nanocarrier antitumor effect. Nanomedicine 2012;8:1208-15
  • de Araújo DR, da Silva DC, Barbosa RM, et al. Strategies for delivering local anesthetics to the skin: focus on liposomes,solid lipid nanoparticles, hydrogels and patches. Expert Opin Drug Deliv 2013;10(11):1551-63
  • Madan JR, Khude PA, Dua K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int J Pharm Investig 2014;4(2):60-4
  • Zhuang CY, Li N, Wang M, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm 2010;394:179-85
  • Zhou L, Chen Y, Zhang Z, et al. Preparation of tripterine nanostructured lipid carriers and their absorption in rat intestine. Pharmazie 2012;67:304-10
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004;56(9):1257-72
  • Zhang XG, Miao J, Dai YQ, et al. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharm 2008;361(1–2):239-44
  • Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009;366(1–2):170-84
  • Fan X, Chen J, Shen Q. Docetaxel-nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery. Int J Pharm 2013;458(2):296-304
  • Khalil RM, Abd-Elbary A, Kassem MA, et al. Nanostructured lipid carriers (NLCs) versus solidlipid nanoparticles (SLNs) for topical delivery of meloxicam.Pharm Dev Technol. 2014;19(3):304-14
  • Lee SG, Jeong JH, Lee KM, et al. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule. Int J Nanomedicine 2014;9:289-99
  • Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv 2014. [Epub ahead of print]
  • Zhang T, Chen J, Zhang Y, et al. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur J Pharm Sci 2011;43(3):174-9
  • Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release 2010;141(3):277-99
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 2005;107(2):215-28
  • Han F, Li S, Yin R, et al. Investigation of nanostructured lipid carriers for transdermal delivery of flurbiprofen. Drug Dev Ind Pharm 2008;34(4):453-8
  • Hu FQ, Jiang SP, Du YZ, et al. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 2006;314(1):83-9
  • Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007;2(3):289-300
  • Wang R, Xiao R, Zeng Z, et al. Application of poly(ethylene glycol)– distearoyl- phosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine 2012;7:4185-98
  • Hallan SS, Kaur P, Kaur V, et al. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif Cells Nanomed Biotechnol 2014. [ Epub ahead of print]
  • Yang Z, Luo X, Zhang X, et al. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed Mater 2013;8(2):25-32
  • Zhang P, Ling G, Pan X, et al. Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine 2012;8(2):185-93
  • Pardeshi CV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified polymer-lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J Mater Sci Mater Med 2013;24(9):2101-15
  • Yi Y, Li Y, Wu H, et al. Single-step assembly of polymer- lipid hybrid nanoparticles for mitomycin C delivery. Nanoscale Res Lett 2014;9(1):560
  • Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet 2008;47:619-34
  • Li M, Chrastina A, Levchenko T, Torchilin VP. Micelles from poly(ethylene glycol)-phosphatidyl ethanolamine conjugates (PEG-PE) as pharmaceutical nanocarriers for poorly soluble drug camptothecin. J Biomed Nanotechnol 2005;1:190-5
  • Sawant RR, Torchilin VP. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol 2010;27:232-46
  • Lukyanov AN, Hartner WC, Torchilin VP. Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 2004;94:187-93
  • Gill KK, Kaddoumi A, Nazzal S. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J Drug Target 2014;30:1-10
  • Varshosaz J, Taymouri S, Hassanzadeh F, et al. Self-assembly micelles with lipid core of cholesterol for docetaxel delivery to B16F10 melanoma and HepG2 cells. J Liposome Res 2014;2:1-9
  • Baginski L, Gobbo OL, Tewes F, et al. In vitro and in vivo characterisation of PEG-lipid-based micellar complexes of salmon calcitonin for pulmonary delivery. Pharm Res 2012;29(6):1425-34
  • Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 2010;49:6288-308
  • Prankerd RJ, Stella VJ. The use of oil-in-water emulsions as a vehicle for parenteral drug administration. J Parenter Sci Technol 1990;44(3):139-49
  • Otomo S, Mizushima Y, Aihara H, et al. Prostaglandin E1 incorporated in lipid microspheres (lipo PGE1). Drugs Exp Clin Res 1985;11(9):627-31
  • Ganta S, Paxton JW, Baguley BC, Garg S. Pharmacokinetics and pharmacodynamics of chlorambucil delivered in parenteral emulsion. Int J Pharm 2008;360:115-21
  • Puglia C, Blasi P, Rizza L, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 2008;357:295-304
  • Cober MP, Teitelbaum DH. Prevention of parenteral nutrition-associated liver disease: lipid minimization. Curr Opin Organ Trasplant 2010;15:330-3
  • Wirtitsch M, Wessner B, Spittler A. Effect of different lipid emulsions on the immunological function in humans: a systematic review with meta-analysis. Clin Nutr 2007;26:302-13
  • Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res 2004;43:489-533
  • Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 2008;29:617-25
  • Tschoeke SK, Ertel W. Immunoparalysis after multiple trauma. Injury 2007;38:1346-57
  • Seki J, Sasaki H, Doi M. Lipid nanosphere (LNS), a protein-free analog of lipoproteins, as a novel drug carrier for parenteral administration. J Control Release 1994;28:352-3
  • Zhang X, Zhang T, Zhou X, et al. Enhancement of oral bioavailability of tripterine through lipid nanospheres: preparation, characterization, and absorption evaluation. J Pharm Sci 2014;103(6):1711-19
  • Hamad I, Al-Hanbali O, Hunter AC, et al. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano 2010;4:6630-8
  • Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci 2014;205:187-206
  • Verma S, Singh SK, Syan N, et al. Nanoparticle vesicular systems:a versatile tool for drug delivery. J Chem Pharm Res 2010;2(2):496-509
  • Waddad AY, Abbad S, Yu F, et al. Formulation,characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm 2013;456:446-58
  • Thompson C, Cheng WP, Gadad P, et al. Uptake and transport of novel amphiphilic polyelectrolyte- insulin nanocomplexes by Caco-2 cells-towards oral insulin. Pharm Res 2011;28:86-896
  • Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull 2011;34(7):945-53
  • Paolino D, Cosco D, Molinaro R, et al. Supramolecular devices to improve the treatment of brain diseases. Drug Discov Today 2011;16(7-8):311-24
  • Azmin MN, Florence AT, Handjani-Vila RM, et al. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 1985;37(4):237-42
  • Dufes C, Gaillard F, Uchegbu IF, et al. Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int J Pharm 2004;285(1-2):77-85
  • Bragagni M, Mennini N, Ghelardini C, Mura P. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J Pharm Pharm Sci 2012;15(1):184-96
  • Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target 2009;17(9):671-89
  • Carafa M, Marianecci C, Rinaldi F, et al. Span and Tween neutral and pH-sensitive vesicles: characterization and in vitro skin permeation. J Liposome Res 2009;19:332
  • Manosroi A, Khanrin P, Lohcharoenkal W, et al. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm 2010;392(1-2):304-10
  • Gupta NK, Dixit VK. Development and evaluation of vesicular system for curcumin delivery. Arch Dermatol Res 2011;303(2):89-101
  • Hamishehkar H, Rahimpour Y, Kouhsoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 2013;10(2):261-72
  • Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 2010;99(4):2049-60
  • Bendas ER, Abdullah H, El-Komy MH, Kassem MA. Hydroxychloroquine niosomes: a new trend in topical management of oral lichen planus. Int J Pharm 2013;458(2):287-95
  • Jadon PS, Gajbhiye V, Jadon RS, et al. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech 2009;10(4):1186-92
  • Akhter S, Kushwaha S, Warsi MH, et al. Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir. Drug Dev Ind Pharm 2012;38(1):84-92
  • Nasr M. In vitro and in vivo evaluation of proniosomes containing celecoxib for oral administration. AAPS PharmSciTech 2010;11(1):85-9
  • Shilpa S, Srinivasan BP, Chauhan M. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int J Drug Delivery 2010;3:14-24
  • Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 1995;125(1):91-7
  • Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 2008;60(6):702-16
  • Khoo SM, Shackleford DM, Porter CJH, et al. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit–dose lipid-based formulation to fasted dogs. Pharm Res 2003;20(9):1460-5
  • Larsen EK, Nielsen T, Wittenborn T, et al. Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 2009;3:1947-51
  • Wang A, Gu F, Zhang L, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008;8:1063-70
  • Ryan SM, Mantovani G, Wang X, et al. Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 2008;5:371-83
  • Nune SK, Gunda P, Majeti BK, et al. Advances in lymphatic imaging and drug delivery. Adv Drug Deliv Rev 2011;63:876-85
  • Rao DA, For rest ML, Alani AW, et al. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J Pharm Sci 2010;99:2018-31
  • Siram K, Chellan VR, Natarajan T, et al. Solid lipid nanoparticles of diethylcarbamazine citrate for enhanced delivery to the lymphatics: in vitro and in vivo evaluation. Expert Opin Drug Deliv 2014;11(9):1351-65
  • Wu H, Zhou A, Lu C, Wang L. Examination of lymphatic transport of puerarin in unconscious lymph duct-cannulated rats after administration in microemulsion drug delivery systems. Eur J Pharm Sci 2011;42:348-53
  • Sanjula B, Shah FM, Javed A, Alka A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target 2009;17:249-56
  • Beloqui A, Solinís MÁ, Gascón AR, et al. Mechanism of transport of saquinavir- loaded nanostructured lipid carriers across the intestinal barrier. J Control Release 2013;166(2):115-23
  • Xu A, Yao M, Xu G, et al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int J Nanomedicine 2012;7:3547-54
  • Roger E, Lagarce F, Garcion E, Benoit JP. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release 2009;140(2):174-81
  • Musacchio T, Torchilin VP. Recent developments in lipid-based pharmaceutical nanocarriers. Front Biosci (Landmark Ed) 2011;16:1388-412

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.