539
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Fluorescent nanoparticles for the accurate detection of drug delivery

, MSc, , Bsc, , PhD, , PhD & , PhD

Bibliography

  • Rawat M, Singh D, Saraf S, et al. Nanocarriers: promising vehicle for bioactive drugs. Biological & pharmaceutical bulletin 2006;29(9):1790-8
  • Zhang Y, Yang J. Design strategies for fluorescent biodegradable polymeric biomaterials. J Mater Chem B Mater Biol Med 2013;1(2):132-48
  • Soto CM, Blum AS, Vora GJ, et al. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 2006;128(15):5184-9
  • Lewis JD, Destito G, Zijlstra A, et al. Viral nanoparticles as tools for intravital vascular imaging. Nat Med 2006;12(3):354-60
  • Mathaes R, Winter G, Besheer A, et al. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv 2015;12(3):481-92
  • Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 2008;17(2):89-101
  • Hahn MA, Singh AK, Sharma P, et al. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 2011;399(1):3-27
  • Raffa V, Vittorio O, Riggio C, et al. Progress in nanotechnology for healthcare. Min Invas Ther Allied Technol 2010;19(3):127-35
  • Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release 2008;132(3):164-70
  • Lepage M, Jiang J, Babin J, et al. MRI observation of the light-induced release of a contrast agent from photo-controllable polymer micelles. Phys Med Biol 2007;52(10):N249-55
  • Studwell AJ, Kotton DN. A shift from cell cultures to creatures: in vivo imaging of small animals in experimental regenerative medicine. Mol Ther 2011;19(11):1933-41
  • van Schooneveld MM, Vucic E, Koole R, et al. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 2008;8(8):2517-25
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25(10):1165-70
  • Choi M, Choi K, Ryu SW, et al. Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature. J Biomed Opt 2011;16(4):046008
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010;7(11):653-64
  • Dulkeith E, Morteani AC, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 2002;89(20):203002
  • Sharma P, Brown S, Walter G, et al. Nanoparticles for bioimaging. Adv Colloid Interface Sci 2006;123-126:471-85
  • Terai T, Nagano T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch 2013;465(3):347-59
  • Medintz IL, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 2009;11(1):17-45
  • Frasco MF, Chaniotakis N. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 2010;396(1):229-40
  • Clapp AR, Medintz IL, Mattoussi H. Forster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 2006;7(1):47-57
  • Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 2009;38(4):976-89
  • Liu HS, Jan MS, Chou CK, et al. Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 1999;260(3):712-17
  • Craggs TD. Green fluorescent protein: structure, folding and chromophore maturation. Chem Soc Rev 2009;38(10):2865-75
  • Bourgeois D, Regis-Faro A, Adam V. Photoactivated structural dynamics of fluorescent proteins. Biochem Soc Trans 2012;40(3):531-8
  • Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 2006;6(1):84-8
  • Kunjachan S, Gremse F, Theek B, et al. Noninvasive optical imaging of nanomedicine biodistribution. ACS Nano 2013;7(1):252-62
  • del Pino P, Mitchell SG, Pelaz B. Design and characterization of functional nanoparticles for enhanced bio-performance. Methods Mol Biol 2013;1051:165-207
  • Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res 2011;44(10):1050-60
  • Terreno E, Uggeri F, Aime S. Image guided therapy: the advent of theranostic agents. J Control Release 2012;161(2):328-37
  • Hong H, Zhang Y, Sun J, et al. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 2009;4(5):399-413
  • Kuchmiy AA, Efimov GA, Nedospasov SA. Methods for in vivo molecular imaging. Biochemistry (Mosc) 2012;77(12):1339-53
  • Lakowicz JR. Principles of fluorescence spectroscopy. Springer; 2007
  • Marcu L. Fluorescence lifetime techniques in medical applications. Ann Biomed Eng 2012;40(2):304-31
  • Suhling K, Levitt J, Chung PH. Time-resolved fluorescence anisotropy imaging. Methods Mol Biol 2014;1076:503-19
  • Jung D, Min K, Jung J, et al. Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Mol Biosyst 2013;9(5):862-72
  • Yang H. Progress in single-molecule spectroscopy in cells. Curr Opin Chem Biol 2010;14(1):3-9
  • Rampazzo E, Voltan R, Petrizza L, et al. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. Nanoscale 2013;5(17):7897-905
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007;4(4):297-305
  • Elbayoumi TA, Torchilin VP. Current trends in liposome research. Methods Mol Biol 2010;605:1-27
  • Peng F, Su Y, Zhong Y, et al. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res 2014;47(2):612-23
  • Lai CH, Chang TC, Chuang YJ, et al. Stepwise orthogonal click chemistry toward fabrication of paclitaxel/galactose functionalized fluorescent nanoparticles for HepG2 cell targeting and delivery. Bioconjug Chem 2013;24(10):1698-709
  • McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med 2003;9(6):713-25
  • Watson JV. The early fluidic and optical physics of cytometry. Cytometry 1999;38(1):2-14. discussion 1
  • Janossy G. Clinical flow cytometry, a hypothesis-driven discipline of modern cytomics. Cytometry 2004;58(1):87-97
  • Cormode DP, Skajaa T, Fayad ZA, et al. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009;29(7):992-1000
  • Stuker F, Ripoll J, Rudin M. Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 2011;3(2):229-74
  • Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003;13(1):195-208
  • Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med 2003;9(1):123-8
  • Ntziachristos V, Tung CH, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002;8(7):757-60
  • Pittet MJ, Weissleder R. Intravital imaging. Cell 2011;147(5):983-91
  • Orth JD, Kohler RH, Foijer F, et al. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res 2011;71(13):4608-16
  • Kedrin D, Gligorijevic B, Wyckoff J, et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 2008;5(12):1019-21
  • Sumen C, Mempel TR, Mazo IB, et al. Intravital microscopy: visualizing immunity in context. Immunity 2004;21(3):315-29
  • Knauth M, Aras N, Wirtz CR, et al. Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol 1999;20(8):1547-53
  • Cheng Y, Morshed RA, Auffinger B, et al. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014;66:42-57
  • Tiefenauer LX, Tschirky A, Kuhne G, et al. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 1996;14(4):391-402
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008;5(9):763-75
  • Wu C, Bull B, Szymanski C, et al. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008;2(11):2415-23
  • Feng R, Ta X. Highly luminescent conjugated polymer nanoparticles for imaging and therapy. Canadian Chemical Transactions 2013;1(1):78-84
  • Bindels DS, Goedhart J, Hink MA, et al. Optimization of fluorescent proteins. Methods Mol Biol 2014;1076:371-417
  • Day RN, Davidson MW. The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 2009;38(10):2887-921
  • Sample V, Newman RH, Zhang J. The structure and function of fluorescent proteins. Chem Soc Rev 2009;38(10):2852-64
  • Yang J, Zhang Y, Gautam S, et al. Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 2009;106(25):10086-91
  • Duan C, Adam V, Byrdin M, et al. Structural basis of photoswitching in fluorescent proteins. Methods Mol Biol 2014;1148:177-202
  • Park SI, Lee EO, Kim JW, et al. Polymer-hybridized liposomes anchored with alkyl grafted poly(asparagine). J Colloid Interface Sci 2011;364(1):31-8
  • Akerman ME, Chan WC, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99(20):12617-21
  • Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004;22(1):93-7
  • Nikodem Tomczak DJ, Mingyong Han, Vancso GJ. Designer polymer–quantum dot architectures. Prog Polym Sci 2009;34:5-393-430
  • Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol 2003;21(11):1387-95
  • Jares-Erijman EA, Jovin TM. Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 2006;10(5):409-16
  • Truong K, Ikura M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 2001;11(5):573-8
  • Zhong W. Nanomaterials in fluorescence-based biosensing. Anal Bioanal Chem 2009;394(1):47-59
  • Dulkeith E, Ringler M, Klar TA, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 2005;5(4):585-9
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538-44
  • Algar WR, Krull UJ. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 2008;391(5):1609-18
  • Wenqiang Zou CV, Jeremio A Maduro, Maxim S, et al. Hummelen. Broadband dye-sensitized upconversion of near-infrared light. Nat Photonics 2012;6:4
  • Li Shanga SD, Ulrich Nienhaus G. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nanotoday 2011;6(4):17
  • Desireddy A, Conn BE, Guo J, et al. Ultrastable silver nanoparticles. Nature 2013;501(7467):399-402
  • Abe K, Zhao L, Periasamy A, et al. Non-Invasive In Vivo Imaging of Near Infrared-labeled Transferrin in Breast Cancer Cells and Tumors Using Fluorescence Lifetime FRET. PLoS ONE 2013;8(11):e80269
  • Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 2003;160(5):629-33
  • Carey PR. Raman crystallography and other biochemical applications of Raman microscopy. Ann Rev Phys Chem 2006;57:527-54
  • Matthaus C, Bird B, Miljkovic M, et al. Chapter 10: Infrared and Raman microscopy in cell biology. Methods Cell Biol 2008;89:275-308
  • Kong Y, Chen J, Gao F, et al. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale 2013;5(3):1009-17
  • Min Y, Li J, Liu F, et al. Near-Infrared Light-Mediated Photoactivation of a Platinum Antitumor Prodrug and Simultaneous Cellular Apoptosis Imaging by Upconversion-Luminescent Nanoparticles. Angew Chem Int Engl 2013;53(4):1012-16
  • Lai J, Shah BP, Garfunkel E, et al. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 2013;7(3):2741-50
  • Voss S, Zhao L, Chen X, et al. Generation of an intramolecular three-color fluorescence resonance energy transfer probe by site-specific protein labeling. J Pept Sci 2014;20(2):115-20
  • Emily J, McLaurin LR, Daniel R. Gamelin. Dual-emitting nanoscale temperature sensors. Chem Mat 2013;25:8
  • Keren S, Zavaleta C, Cheng Z, et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 2008;105(15):5844-9
  • Nahrendorf M, Waterman P, Thurber G, et al. Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 2009;29(10):1444-51
  • Duivenvoorden R, Tang J, Cormode DP, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 2014;5:3065
  • Theek B, Gremse F, Kunjachan S, et al. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J Control Release 2014;182:83-9
  • Hak S, Helgesen E, Hektoen HH, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano 2012;6(6):5648-58
  • Hak S, Cebulla J, Huuse EM, et al. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy. Angiogenesis 2014;17(1):93-107
  • Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Zhao Y, van Rooy I, Hak S, et al. Near-infrared fluorescence energy transfer imaging of nanoparticle accumulation and dissociation kinetics in tumor-bearing mice. ACS Nano 2013;7(11):10362-70
  • Zhao Y, Schapotschnikow P, Skajaa T, et al. Probing lipid coating dynamics of quantum dot core micelles via forster resonance energy transfer. Small 2013. [Epub ahead of print]
  • Skajaa T, Zhao Y, van den Heuvel DJ, et al. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Forster resonance energy transfer. Nano Lett 2010;10(12):5131-8
  • Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods 2005;2(12):905-9
  • RP H. Molecular probes. handbook of fluorescent probes and research chemicals. 9th ed, 2002
  • Best QA, Liu C, van Hoveln PD, et al. Anilinomethylrhodamines: pH sensitive probes with tunable photophysical properties by substituent effect. J Org Chem 2013;78(20):10134-43
  • McDonagh C, Burke CS, MacCraith BD. Optical chemical sensors. Chem Rev 2008;108(2):400-22
  • Lakowicz JR. Principles of frequency-domain fluorescence spectroscopy and applications to cell membranes. Sub-cellular Biochem 1988;13:89-126
  • Budinger TF, Benaron DA, Koretsky AP. Imaging transgenic animals. Annu Rev Biomed Eng 1999;1:611-48
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009;30(11):592-9
  • Lobatto ME, Fuster V, Fayad ZA, et al. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Rev Drug Discov 2011;10(11):835-52
  • Aliabadi HM, Mahmud A, Sharifabadi AD, et al. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release 2005;104(2):301-11
  • Manvelian G, Daniels S, Gibofsky A. A phase 2 study evaluating the efficacy and safety of a novel, proprietary, nano-formulated, lower dose oral diclofenac. Pain Med 2012;13(11):1491-8
  • Chen Y, Li X. Near-infrared fluorescent nanocapsules with reversible response to thermal/pH modulation for optical imaging. Biomacromolecules 2011;12(12):4367-72
  • Ichimura T, Jin T, Fujita H, et al. Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles. Front Physiol 2014;5:273
  • Algar WR, Ancona MG, Malanoski AP, et al. Assembly of a concentric Forster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. ACS Nano 2012;6(12):11044-58
  • Algar WR, Malanoski AP, Susumu K, et al. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Forster resonance energy transfer relay. Anal Chem 2012;84(22):10136-46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.