552
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Nucleic acid vaccination strategies against infectious diseases

, &

Bibliography

  • Narendra BL, Reddy KE, Shantikumar S, Ramakrishna S. Immune system: a double-edged sword in cancer. Inflamm Res 2013;62:823-34
  • Wang YM, Zhou JJ, Wang Y, et al. Daedalic DNA vaccination against self antigens as a treatment for chronic kidney disease. Int J Clin Exp Pathol 2013;6(3):326-33
  • Baird FJ, Lopata AL. The dichotomy of pathogens and allergens in vaccination approaches. Front Microbiol 2014;5:365
  • Li D, Borovkov A, Vaglenov A, et al. Mouse model of respiratory Chlamydia pneumoniae infection for a genomic screen of subunit vaccine candidates. Vaccine 2006;24(15):2917-27
  • Anderson RJ, Schneider J. Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 2007;25S:B24-34
  • Sedova ES, Shcherbinin DN, Migunov AI, et al. Recombinant Influenza Vaccines. Acta Naturae 2012;4(15):17-27
  • Donnelly JJ, Liu MA, Ulmer JB. Antigen presentation and DNA vaccines. Am J Respir Crit Care Med 2000;162:S190-3
  • Fissolo N, Montalban X, Comabella M. DNA-based vaccines for multiple sclerosis: Current status and future directions. Clin Immunol 2012;142:76-83
  • Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine 2012;30:4414-18
  • Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 2012;12:479-91
  • Wu CN, Lin YC, Fann C, et al. Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 2002;20:895-904
  • Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. J Control Release 2012;161(2):554-65
  • Kim ES, Yang SW, Hong DK, et al. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo. J Control Release 2010;392(1):9-15
  • Wang HY, Chen JX, Sun YX, et al. Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release 2011;155(1):26-33
  • Geall AJ, Mandl CW, Ulmer JB. RNA: The new revolution in nucleic acid vaccines. Semin Immunol 2013;25:152-9
  • Saxena S, Sonwane AA, Dahiya SS, et al. Induction of immune responses and protection in mice against rabies using a self-replicating RNA vaccine encoding rabies virus glycoprotein. Vet Microbiol 2009;136:36-44
  • Li L, Saade F, Petrovsky N. The future of human DNA vaccines. J Biotechnol 2012;162:171-82
  • Hutnick NA, Myles DJF, Hirao L, et al. An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge. Vaccine 2012;30(21):3202-8
  • Kreiter S, Diken S, Selmi A, et al. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 2011;23:399-406
  • Pollard C, De Koker S, Saelens X, et al. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol Med 2013;19:705-13
  • Rodríguez-Gascón A, del Pozo-Rodríguez A, Solinís MA. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine 2014;9:1833-43
  • Li J, Sun Y, Jia T, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer 2014;134(7):1683-94
  • Haritha PN, Devi SU, Nagaratna DP, et al. Gene therapy- a review. Internat J Biopharmaceut 2012;3(1):55-64
  • Lamichhane A, Azegami T, Kiyonoa H. The mucosal immune system for vaccine development. Vaccine 2014;32(49):6711-23
  • Cicchelero L, de Rooster H, Sanders NN. Various ways to improve whole cancer cell vaccines. Expert Rev Vaccines 2014;13(6):721-35
  • Rychak JJ, Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliver Rev 2014;72:82-93
  • Un K, Kawakami S, Suzuki R, et al. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 2010;31:7813-26
  • Hutnick NA, Myles DJF, Bian CB, et al. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr Opin Virol 2011;1:233-40
  • Senovilla L, Vacchelli E, Garcia P, et al. Trial watch DNA vaccines for cancer therapy. OncoImmunology 2013;2(4):e23803-13
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011;23:421-9
  • Vasan S, Hurley A, Schlesinger SJ, et al. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 2011;6(5):e19252
  • Kumar R, Nyakundi R, Kariuki T, et al. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons. Vacine 2013;31:3140-7
  • Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. BMCL Diges 2015. [Epub ahead of print]
  • Bins AD, van den Berg JH, Oosterhuis K, Haanen JBAG. Recent advances towards the clinical application of DNA vaccines. Neth J Med 2013;71(3):109-17
  • Schleef M. DNA-Pharmaceuticals: Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy. Editors. Wiley-Blackwell 2005
  • Weide B, Garbe C, Rammensee HG, Pascolo S. Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 2008;115:33-42
  • Brito LA, Kommareddy S, Maione D, et al. Self-Amplifying mRNA Vaccines. Adv Genet 2015;89:179-233
  • Hooper JW, Moon JE, Paolino KM, et al. A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for haemorrhagic fever with renal syndrome delivered by intramuscular electroporation. Clin Microbiol Infect 2014;5:110-17
  • Pisetsky DS. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol 2012;144:32-40
  • Blander JM, Sander LE. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol 2012;12:215-25
  • Warshakoon HJ, Hood JD, Kimbrell MR, et al. Potential adjuvantic properties of innate immune stimuli. Hum Vaccin 2009;5(6):381-94
  • Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract. Science 2005;307(571):731-4
  • San Román B, Irache JM, Gómez S, et al. Co-delivery of ovalbumin and CpG motifs into microparticles protected sensitized mice from anaphylaxis. Int Arch Allergy Immunol 2009;149(2):111-18
  • Morello CS, Levinson MS, Kraynyak KA, Spector DH. Immunization with Herpes Simplex Virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease. J Virol 2011;85:3461-72
  • Tsuji T, Hamajima K, Fukushima J, et al. Enhancement of cell-mediated immunity against HIV-1 induced by coinoculation of plasmid-encoded HIV-1 antigen with plasmid expressing IL-12. J Immunol 1997;158:4008-13
  • Chen HM, Wang PH, Aravindaram K, et al. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES. J Biomed Sci 2012;19(1):42
  • Gamazo C, Irache JM. Antigen delivery systems as oral adjuvants. Chapter in “Molecular Vaccines”. Springer International, Switzerland; 2014
  • Tamayo I, Irache JM, Mansilla C, et al. Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin Vaccine Immunol 2010;17(9):1356-62
  • Camacho AI, Da Costa Martins R, Tamayo I, et al. Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine 2011;29(41):7130-5
  • Tavernier G, Andries O, Demeester J, et al. mRNA as gene therapeutic: How to control protein expression. J Controlled Release 2011;150:238-47
  • Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012;30:2256-72
  • Doukas J, Morrow J, Bellinger D, et al. Nonclinical biodistribution, integration, and toxicology evaluations of an H5N1 pandemic influenza plasmid DNA vaccine formulated with Vaxfectin®. Vaccine 2011;29:5443-52
  • Chen L, Zhu J, Li Y, et al. Enhanced nasal mucosal delivery and immunogenicity of anti-caries DNA vaccine through incorporation of anionic liposomes in chitosan/DNA complexes. PLoS One 2013;8(8):e71953
  • Wang D, Xu J, Feng Y, et al. Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response. Vaccine 2010;28(18):3134-42
  • Imbuluzqueta E, Elizondo E, Gamazo C, et al. Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections. Acta Biomater 2011;7(4):1599-608
  • des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006;116(1):1-27
  • Mundargi RC, Babu VR, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 2008;125(3):193-209
  • de Koker S, Lambrecht BN, Willart MA, et al. Designing polymeric particles for antigen delivery. Chem Soc Rev 2011;40(1):320-9
  • Jain S, O’Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 2011;10(12):1731-42
  • Bal SM, Slütter B, Verheul R, et al. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci 2012;45(4):475-81
  • Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 2008;5(6):703-24
  • Salman HH, Gamazo C, Campanero MA, Irache JM. Salmonella-like bioadhesive nanoparticles. J Control Release 2005;106(1-2):1-13
  • Gómez S, Gamazo C, San Román B, et al. Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis. Eur J Pharm Biopharm 2008;70(3):711-17
  • Prasad S, Cody V, Saucier-Sawyer JK, et al. Optimization of stability, encapsulation, release, and cross-priming of tumor antigen-containing PLGA nanoparticles. Pharm Res 2012;29(9):2565-77
  • Kallen KJ, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology. Self-adjuvanted RNActive® vaccines. Hum Vaccin Immunother 2013;9(10):2263-76
  • Shlapobersky M, Marshak JO, Dong L. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J. Gen.Virol 2012;93:1305-15
  • Mann JFS, McKay PF, Arokiasamy S, et al. Pulmonary delivery of DNA vaccine constructs using deacylated PEI elicits immune responses and protects against viral challenge infection. J. Controlled Release 2013;170:452-9
  • Clinicaltrials.gov. United States National Institutes of Health. Available from: www.clinicaltrials.gov [Last accessed on 18 July 2015]
  • Veselenak RL, Shlapobersky M, Pyles RB, et al. Vaxfectin®-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine 2012;30(49):7046-51
  • Morello CS, Kraynyak KA, Levinson MS, et al. Inactivated HSV-2 in MPL/alum adjuvant provides nearly complete protection against genital infection and shedding following long term challenge and rechallenge. Vaccine 2012;30(46):6541-50
  • Tirabassi RS, Ace CI, Levchenko T, et al. A Mucosal Vaccination Approach for Herpes Simplex Virus Type-2. Vaccine 2012;29(5):1090-8
  • Johnston C, Koelle DM, Wald A. Current status and prospects for development of an HSV vaccine. Vaccine 2014;32(14):1553-60
  • Lee SY, Huang Z, Kang TH, et al. Histone deacetylase inhibitor AR-42 enhances E7-specific CD8+ T cell-mediated antitumor immunity induced by therapeutic HPV DNA vaccination. J Mol Med (Berl) 2013;91(10):1221-31
  • Han KT, Sin JI. DNA vaccines targeting human papillomavirus-associated diseases: progresses in animal and clinical studies. Clin ExpVaccine Res 2013;2(2):106-14
  • Diniz MO, Cariri FAMO, Aps LRMM, Ferreira LCS. Enhanced therapeutic effects conferred by an experimental DNA vaccine targeting human papilloma virus-induced tumors. Hum Gene Ther 2013;24(10):861-70
  • Bagarazzi ML, Yan J, Morrow MP, et al. Immunotherapy Against HPV16/18 Generates Potent TH1 and Cytotoxic Cellular Immune Responses. Sci Transl Med 2012;4(155):155ra138
  • Mulligan MJ, Russell ND, Celum C, et al. Excellent safety and tolerability of the human immunodeficiency virus type 1 pGA2/JS2 plasmid DNA priming vector vaccine in HIV type 1 uninfected adults. AIDS Res Hum Retroviruses 2006;22(7):676-83
  • Gorse GJ, Baden LR, Wecker M, et al. Safety and immunogenicity of cytotoxic T-lymphocyte poly-epitope, DNA plasmid (EP HIV-1090) vaccine in healthy, human immunodeficiency virus type 1 (HIV-1)-uninfected adults. Vaccine 2008;2682:215-23
  • Graham BS, Koup RA, Roederer M, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis 2006;194(12):1650-60
  • Kalams SA, Parker SD, Elizaga M, et al. Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery. J Infect Dis 2013;208:818-29
  • Vardas E, Stanescu I, Leinonen M, et al. Indicators of therapeutic effect in FIT-06, a Phase II trial of a DNA vaccine, GTU®-Multi-HIVB, in untreated HIV-1 infected subjects. Vaccine 2012;30:4046-54
  • Periodic Report Summary 3 - CUT’HIVAC (Cutaneous and Mucosal HIV Vaccination). European Commision Community Research and Development Information Service. Available from: http://cordis.europa.eu/result/rcn/57317_en.html [Last accessed 25 February 2015]
  • Palma P, Romiti ML, Montesano et al. Therapeutic DNA vaccination of vertically HIV-infected children: report of the first pediatric randomised trial (PEDVAC). PLoS One 2013;8(11):e79957
  • Fournillier A, Frelin L, Jacquier E, et al. A heterologous prime/boost vaccination strategy enhances the immunogenicity of therapeutic vaccines for Hepatitis C Virus. J Infect Dis 2013;208:1008-19
  • Limonta M, Krajnc NL, Vidic U, Zumalacárregui L. Simulation for the recovery of plasmid for a DNA vaccine. Biochem Eng J 2013;80:14-18
  • Layek B, Lipp L, Singh J. APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Control Release 2015;207:143-53
  • Xing Y, Huanga Z, Lin Y, et al. The ability of Hepatitis B surface antigen DNA vaccine to elicit cell-mediated immune responses, but not antibody responses, was affected by the deglysosylation of S antigen. Vaccine 2008;36(40):5145-52
  • Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 2006;40:86-97
  • Ledgerwood JE, Bellamie AR, Belshe R, et al. DNA Priming for Seasonal Influenza Vaccine: A Phase 1b Double-Blind Randomized Clinical Trial. PLoS One 2015;10(5):e0125914
  • Smith LR, Wloch MK, Ye M, et al. Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 2010;28:2565-72
  • Martin JE, Louder MK, Holman LA, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine 2008;26(50):6338-43
  • Santana VC, Diniz MO, Cariri FAMO, et al. Bicistronic DNA vaccines simultaneously encoding HIV, HSV and HPV antigens promote CD8+ T cell responses and protective immunity. PLoS One 2013;8(8):e71322
  • Zhang M, Zhao L, Song J, et al. DNA vaccine encoding the Toxoplasma gondii bradyzoite-specificsurface antigens SAG2CDX protect BALB/c mice against type II parasite infection. Vaccine 2013;31:4536-40
  • Sautter J, Olesen OF, Bray J, Draghia-Akli R. European Union vaccine research - An overview. Vaccine 2011;29(39):6723-7
  • Tamminga C, Sedegah M, Maiolatesi S, et al. Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection. Hum Vaccin Immunother 2013;9(10):2165-77
  • Munoz-Montesino C, Andrews E, Rivers R, et al. Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD44+ and CD8+ T cells. Infect Immun 2004;72(4):2081-7
  • Ahn SS, Jeon BY, Park SJ, et al. Nonlytic Fc-fused IL-7 synergizes with Mtb32 DNA vaccine to enhance antigen-specific T cell responses in a therapeutic model of tuberculosis. Vaccine 2013;31:2884-90
  • Smaill F, Xing Z. Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future? Expert Rev Vaccines 2014;13(8):927-30
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;259:1745-9
  • Ulmer JB, Mansoura MK, Geall AJ. Vaccines ‘on demand’: science fiction or a future reality. Expert opun Drug Discov 2015;10:101-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.