226
Views
2
CrossRef citations to date
0
Altmetric
Review

Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer

, , , , & (Professor)

Bibliography

  • Kurman RJ, Shih LM. The origin and pathogenesis of epithelial ovarian cancer – a proposed unifying theory. Am J Surg Pathol 2010;34:433-43
  • Lee-Jones L. Ovary: epithelial tumors. Atlas Genet Cytogenet Oncol Haematol 2004;8(2):115-33
  • Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 2009;9:415-28
  • Cancer facts and figures. American Cancer Society; Atlanta: 2010. Available from: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2010/index [Last accessed 01 May 2014]
  • Yallapu MM, Jaggi M, Chauhan SC. Scope of nanotechnology in ovarian cancer therapeutics. J Ovarian Res 2010;19:1-10
  • Welsh JB, Zarrinkar PP, Sapinoso LM, et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 2001;98:1176-81
  • Hennessy BT, Markman M. Development of novel agents for ovarian cancer. Update Cancer Ther 2009;3:119-32
  • Hassan R, Remaley AT, Sampson ML, et al. Detection and quantitation of serum mesothelin, a tumour marker for patients with mesothelioma and ovarian cancer. Clin Cancer Res 2006;12:447-53
  • Campbell TN, Robbins SM. The Eph receptor/Ephrin system: an emerging player in the invasion game. Curr Issues Mol Biol 2008;10:61-6
  • Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 2006;354:34-43
  • Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 2012;366:1382-92
  • Colombo N, Peiretti M, Parma G, et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;21:v24-30
  • Perren TJ, Swart AM, Pfisterer J, et al. A phase 3 trial of Bevacizumab in ovarian cancer. N Engl J Med 2011;365:2484-96
  • Sudimack JBA, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147-62
  • Lu KH, Patterson AP, Wang L, et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res 2004;10:3291-300
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol 2008;26:57-64
  • Kamei T, Kitayama J, Yamaguchi H, et al. Spatial distribution of intraperitoneally administered paclitaxel nanoparticles solubilized with poly (2-methacryloxyethyl phosphorylcholine-co-n-butyl methacrylate) in peritoneal metastatic nodules. Cancer Sci 2010;102:200-5
  • Shao P, Wang B, Wang Y, et al. The application of thermosensitive nanocarriers in controlled drug delivery. J Nano Mater 2011;2011:1-12
  • Kim K, Kim JH, Park H, et al. Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery and therapeutic monitoring. J Control Release 2010;146:219-27
  • LaRocque J, Bharali DJ, Mousa SA. Cancer Detection and treatment: the role of nanomedicines. Mol Biotechnol 2009;42:358-66
  • Alexis F, Rhee JW, Richie JP, et al. New frontiers in nanotechnology for cancer treatment. Urol Oncol 2008;26:74-85
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14:1310-16
  • Patel S, Bhirde AA, Rusling JF, et al. Nano delivers big: designing molecular missiles for cancer therapeutics. Pharmaceutics 2011;3:34-52
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications – reflections in the field. Adv Drug Deliv Rev 2012;64:102-15
  • Chen HT, Neerman MF, Parrish AR, Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 2004;126:10044-8
  • Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008;60:1037-55
  • Li Z, Huang P, Zhang X, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 2009;7:94-104
  • Shi X, Wang SH, Shen M, et al. Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules 2009;10:1744-50
  • Zhang Z, Yang Y, Zhang Y, et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 2006;12:4933-9
  • Agrawal O, Brahme R, Faria M, Shidhaye S. Nanotechnology in cancer: a clinical review. J Appl Pharm Sci 2011;01:25-9
  • von Maltzahn G, Park JH, Lin KY, et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 2011;10:545-52
  • Sauerwein W, Zurlo A. The EORTC Boron neutron capture therapy (BNCT) group: achievements and future projects. Eur J Cancer 2002;38:S31-4
  • Landen CNJr, Chavez-Reyes A, Bucana C, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65:6910-18
  • Halder J, Kamat AA, Landen CL, et al. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006;12:4916-24
  • Cuenca AG, Jiang H, Hochwald SN, et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006;107:459-66
  • Reddy AK, Rathinaraj BS, Prathyusha P, et al. Emerging trends of nanotechnology in cancer therapy. Int J Pharm Bio Arch 2010;2:1-8
  • Shah A, Shah P. Nanomedicine and cancer. Int J Pharm Sci Rev Res 2010;5:155-9
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161-71
  • Morrison DWG, Dokmeci MR, Demirci U, Khademhosseini A. Clinical applications of micro- and nanoscale biosensors. Chapter 17 In: Gonsalves KE, Halberstadt CR, Laurencin CT, Nair LS, editors. Biomedical nanostructures. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2008. p. 433-54
  • Datar RH, Cote RJ. Nanomedicine: concepts, status and the future. Med Innov Bus 2010;2:6-17
  • Iervolino E, Riccio M, Santagata F, et al. Resonance frequency of locally heated cantilever beams. Sens Actuators A Phys 2013;190:6-12
  • Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine 2007;3:103-10
  • Yang J, Lee J, Kang J, et al. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater 2009;21:4339-42
  • Arnida MM, Janat-Amsbury A, Ray CM, et al. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2011;77:417-23
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007;2:681-93
  • Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709-11
  • Turkin O. The application of nanomaterials in cancer diagnostics and treatment. Volume 8 The University of Groningen; 2010; p. 11-18,19. Available from: http://clab.ajums.ac.ir/_clab/documents/application%20of%20nanomaterialsin%20cancer%20diagnostics%20and%20treatm.pdf
  • Radt B, Smith TA, Caruso F. Optically addressable nanostructured capsules. Adv Mater 2004;16(23-4):2184-9
  • Portnoy E, Lecht S, Lazarovici P, et al. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine 2011;7:480-8
  • Lu W, Zhang G, Zhang R, et al. Tumor site-specific silencing of NF-KB p65 by targeted hollow gold nanosphere – mediated photothermal transfection. Cancer Res 2010;70:3177-88
  • Gao Y, Chen Y, Ji X, et al. Controlled intracellular release of Doxorubicin in Multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 2011;5:9788-98
  • Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of Gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 2010;132:1517-19
  • Maeng JH, Lee DH, Jung KH, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 2010;31:4995-5006
  • Lee JW, Han HD, Shahzad MM, et al. EphA2 immunoconjugate as molecularly targeted chemotherapy for ovarian carcinoma. J Natl Cancer Inst 2009;101:1193-205
  • Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 2004;10:9190-8
  • Sourbier C. Ovarian cancer: emerging molecular-targeted therapies. Biologics 2012;6:147-54
  • Landen CN, Lu C, Han LY, et al. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst 2006;98:1558-70
  • Lin YG, Han LY, Kamat AA, et al. EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer 2007;109:332-40
  • Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 2011;15:31-51
  • Thaker PH, Deavers M, Celestino J, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 2004;10:5145-50
  • Mosch B, Reissenweber B, Neuber C, Pietzsch J. Eph receptors and ephrin ligands: important players in angiogenesis and tumor angiogenesis. J Oncol 2010;2010:1-12
  • Xi HQ, Wu XS, Wei B, Chen L. Eph Receptors and ephrins as targets for cancer therapy. J Cell Mol Med 2012;16:2894-909
  • Wykosky J, Debinski W. The EphA2 receptor and EphrinA1 in solid tumors: function and therapeutic imaging. Mol Cancer Res 2008;6:1795-806
  • Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signaling and beyond. Nat Rev Cancer 2010;10:165-80
  • Wykosky J, Gibo DM, Debinski W. A novel, potent and specific ephrinA1-based cytotoxin against EphA2 receptor-expressing tumor cells. Mol Cancer Ther 2007;6:3208-18
  • Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 2008;41:120-9
  • Wang S, Placzek WJ, Stebbins JL, et al. A novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells. J Med Chem 2012;55:2427-36
  • Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS. Antibody targeting of the EphA2 Tyrosine kinase inhibits malignant cell behaviour. Cancer Res 2002;62:2840-7
  • Zhou Z, Yuan X, Li Z, et al. RNA interference targeting EphA2 inhibits proliferation, induces apoptosis, and cooperates with cytotoxic drugs in human glioma cells. J Surg Neurol 2008;70:562-9
  • Larsen AB, Stockhausen MT, Poulsen HS. Cell adhesion and EGFR activation regulate EphA2 expression in cancer. Cell Signal 2010;22:636-44
  • Ansuini H, Meola A, Gunes Z, et al. Anti-EphA2 antibodies with distinct in vitro properties have equal in vivo efficacy in pancreatic cancer. J Oncol 2009;2009:1-10
  • Scarberry KE, Dickerson EB, Zhang ZJ, et al. Selective removal of ovarian cancer cells from human ascites fluid using magnetic nanoparticles. Nanomedicine 2010;6:399-408
  • Toffoli G, Russo A, Gallo A, et al. Expression of folate binding protein as a prognostic factor for response to platinum-containing chemotherapy and survival in human ovarian cancer. Int J Cancer 1998;79:121-6
  • Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 2001;6:44-51
  • Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2002;54:675-93
  • Kalli KR, Oberg AL, Keeney GL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol 2008;108:619-26
  • Dixit V, Van den Bossche J, Sherman DM, et al. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem 2006;17:603-9
  • Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995;1233:134-44
  • Werner ME, Karve S, Sukumar R, et al. Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 2011;32:8548-54
  • Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate-receptor-alpha targeting: first in-human results. Nat Med 2011;17:1315-19
  • Nukolova NV, Oberoi HS, Cohen SM, et al. Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 2011;32:5417-26
  • Shah CA, Lowe KA, Paley P, et al. Influence of ovarian cancer risk status on the diagnostic performance of the serum biomarkers mesothelin, HE4 and CA125. Cancer Epidemiol Biomarkers Prev 2009;18:1365-72
  • Senapati S, Das S, Batra SK. Mucin-interacting proteins: from function to therapeutics. Trends Biochem Sci 2009;35:236-45
  • Jonckheere N, Van Seuningen N. The membrane-bound mucins: from cell-signalling to transcriptional regulation and expression in epithelial cancers. Biochimie 2010;92:1-11
  • Gubbels JAA, Belisle J, Onda M, et al. Mesothelin-MUC16 binding is a high-affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 2006;5:1-15
  • Xiang X, Feng M, Felder M, et al. HN125: a novel immunoadhesin targeting MUC16 with potential for cancer therapy. J Cancer 2011;2:280-91
  • Zhu J, Wan Q, Ragupathi G, et al. Biologics through chemistry: total synthesis of a proposed dual-acting vaccine targeting ovarian cancer by orchestration of oligosaccharide and polypeptide domains. J Am Chem Soc 2009;131:4151-8
  • Alvarez H, Rojas PL, Yong KT, et al. Mesothelin is a specific biomarker of invasive cancer in the Barrett-associated adenocarcinoma progression model: translational implications for diagnosis and therapy. Nanomedicine 2008;4:295-301
  • Posadas EM, Davidson B, Kohn EC. Proteomics and ovarian cancer: implications for diagnosis and treatment: a critical review of the recent literature. Curr Opin Oncol 2004;16:478-84
  • Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009;30:5737-50
  • Drapkin R, von Horsten HH, Lin Y, et al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res 2005;65:2162-9
  • Hellström I, Raycraft J, Hayden-Ledbetter M, et al. The HE4 (WFDC2) is a biomarker for ovarian carcinoma. Cancer Res 2003;63:3695-700
  • Moore RG, McMeekin DS, Brown AK, et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol 2009;112:40-6
  • Anderson GL, McIntosh M, Wu L, et al. Assessing lead time of selected ovarian cancer biomarkers: a nested-case control study. J Natl Cancer Inst 2009;102:26-38
  • Huang Y, Zugates GT, Peng W, et al. Nanoparticle-delivered suicide gene therapy effectively reduces ovarian tumor burden in mice. Cancer Res 2009;69:6184-91
  • Gunawardana CG, Kuk C, Smith CR, et al. Comprehensive analysis of conditioned media from ovarian cancer cell lines identifies novel candidate markers of epithelial ovarian cancer. J Proteome Res 2009;8:4705-13
  • July LV, Beraldi E, So A, et al. Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo. Mol Cancer Ther 2004;3:223-32
  • Lau SH, Sham JST, Xie D, et al. Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene 2006;25:1242-50
  • Park DC, Yeo SG, Wilson MR, et al. Clusterin interacts with paclitaxel and confer paclitaxel resistance in ovarian cancer. Neoplasia 2008;10:964-72
  • Stahel RA, Zangemeister-Wittke U. Antisense oligonucleotides for cancer therapy- an overview. Lung Cancer 2003;41:S81-8
  • Scaltriti M, Bettuzzi S, Sharrard RM, et al. Clusterin overexpression in both malignant and nonmalignant prostate epithelial cells induces cell cycle arrest and apoptosis. Br J Cancer 2004;91:1842-50
  • Watari H, Ohta Y, Hassan MK, et al. Clusterin expression predicts survival of invasive cervical cancer patients treated with radical hysterectomy and systemic lymphadenectomy. Gynecol Oncol 2008;108:527-32
  • Pai SI, Lin YY, Macaes B, et al. Prospects of RNA interference therapy for cancer. Gene Ther 2006;13:464-77
  • Hassan MK, Watari H, Han Y, et al. Clusterin is a potential molecular predictor for ovarian cancer patients’ survival: targeting Clusterin improves response to Paclitaxel. J Exp Clin Cancer Res 2011;30:1-14
  • Rubenstein M, Tsui P, Guinan P. Treatment of Prostate and breast tumors employing mono-and bi-specific antisense oligonucleotides targeting apoptosis inhibitory proteins clusterin and bcl-2. Med Oncol 2010;27:592-9
  • Lenferink AEG, Cantin C, Nantel A, et al. Transcriptome profiling of a TGF-beta-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies. Oncogene 2010;29:831-44
  • Dorn J, Harbeck N, Kates R, et al. Impact of expression differences of Kallikrein-related peptidases and of uPA and PAI-1 between primary tumor and omentum metastasis in advanced ovarian cancer. Ann Oncol 2011;22:877-83
  • Diamandis EP, Yousef GM. Human tissue kallikreins: a family of new cancer biomarkers. Clin Chem 2002;48:1198-205
  • Paliouras M, Borgono C, Diamandis EP. Human tissue kallikreins: the cancer biomarker family. Cancer Lett 2007;249:61-79
  • White NM, Mathews M, Yousef GM, et al. KLK6 and KLK13 predict tumor recurrence in epithelial ovarian carcinoma. Br J Cancer 2009;101:1107-13
  • Yousef GM, Polymeris ME, Yacoub GM, et al. Parallel overexpression of seven kallikreins genes in ovarian cancer. Cancer Res 2003;63:2223-7
  • White NM, Chow TF, Mejia-Guerrero S, et al. Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 2010;102:1244-53
  • Oikonomopoulou K, Li L, Zheng Y, et al. Prediction of Ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel. Br J Cancer 2008;99:1103-13
  • Mavridis K, Scorilas A. Prognostic value and biological role of the Kallikrein-related peptidases in human malignancies. Future Oncol 2010;6:269-85
  • Dutta S, Wang F, Phalen A, Fishman DA. Biomarkers for ovarian cancer detection and therapy. Cancer Biol Ther 2010;9:668-77
  • Visintin I, Feng Z, Longton G, et al. Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 2008;14:1065-72
  • El Sherbini MA, Sallam MM, Shaban EAK, El-Shalakany AH. Diagnostic value of serum Kallikrein-related peptidases 6 and 10 versus CA125 in ovarian cancer. Int J Gynecol Cancer 2011;21:625-32
  • Lose F, Batra J, O’Mara T, et al. Common variation in Kallikrein genes KLK5, KLK6, KLK12 and KLK13 and risk of prostate cancer and tumor aggressiveness. Urol Oncol 2013;31(5):635-43
  • Ishige S, Kasamatsu A, Ogoshi K, et al. Decreased expression of Kallikrein-related peptidase 13: possible contribution to metastasis of Human oral cancer. Mol Carcinog 2014;53(7):557-65
  • Florou D, Mavridis K, Scorilas A. The Kallikrein-related peptidase 13 (KLK13) gene is substantially up-regulated after exposure of gastric cancer cells to antineoplastic agents. Tumour Biol 2012;33:2069-78
  • Cramer DW, Bast RC, Berg CD, et al. Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prev Res (Phila) 2011;4:365-74
  • Onyuksel H, Jeon E, Rubinstein I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistance breast cancer cells. Cancer Lett 2009;274:327-30
  • Wheate NJ, Collins JG. Multi-nuclear platinum complexes as anti-cancer drugs. Coord Chem Rev 2003;241:133-45
  • Li Z, Hu S, Wang J, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol 2010;119:125-30
  • Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 2004;3:833-8
  • Eckstein N. Platinum resistance in breast and ovarian cancer cell lines. J Exp Clin Cancer Res 2011;30:1-11
  • Penson RT, Olivia E, Skates SJ, et al. Expression of Multi-drug resistance-1 protein inversely correlates with Paclitaxel response and survival in ovarian cancer patients: a study in serial samples. Gynecol Oncol 2004;93:98-106
  • Chan JK, Pham H, You XJ, et al. Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model. Cancer Res 2005;65:3243-8
  • Mozzetti S, Ferlini C, Concolino P, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 2005;11:298-305
  • Yezhelyev MV, Gao X, Xing Y, et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 2006;7:657
  • Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 2011;4:1-10
  • Kim PS, Djazayeri S, Zeineldin R. Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol 2011;120:393-403
  • Henkels KM, Turchi JJ. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res 1999;59:3077-83
  • Feki A, Berardi P, Bellingan G, et al. Dissemination of intraperitoneal ovarian cancer: discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit Rev Oncol Hematol 2009;72:1-9
  • Aly A, Ganesan S. BRCA1, PARP and 53BP1: conditional synthetic lethality and synthetic viability. Mol Cell Biol 2011;3:66-74
  • Rottenburg S, Jaspers JE, Kersbergen A, et al. High sensitivity of BRCA1- deficient mammary tumors to the PARP1 inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 2008;104:17079-84
  • Khatri S, Drabu S, Babu S, Verma D. Nanotechnology: an introduction to future drug delivery systems. J Chem Pharm Res 2010;2:171-9
  • Leonard DGB, Travis LB. Addya K, et al. p53 Mutations in leukemia and myelodysplastic syndrome after ovarian cancer. Clin Cancer Res 2002;8:973-85
  • Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 2011;44(10):936-46
  • Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional Micellar nanomedicine for Cancer therapy. Exp Biol Med 2009;234:123-31
  • Wan Q, Xie L, Gao L, et al. Self-assembled maganetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery. Nanoscale 2013;5:744-52
  • Lim EK, Huh YM, Yang J, et al. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 2011;23:2436-42
  • Khlebtsov N, Bogatyrev V, Dykman L, et al. Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 2013;3(3):167-80
  • Wang C, Cheng L, Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013;3(5):317-30
  • Hayashi K, Nakamura M, Sakamoto W, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 2013;3(6):366-76
  • Shukla R, Thomas TP, Peters JL, et al. HER2 specific tumor targeting with dendrimer conjugated Anti-HER2 mAb. Bioconjug Chem 2006;17:1109-15
  • Kim JO, Sahay G, Kabanov AV, Bronich TK. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents. Biomacromolecules 2010;11:919-26
  • Zhang W, Shi Y, Chen Y, et al. Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 2011;32:2894-906
  • Ren Y, Wong SM, Lim LY. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for Doxorubicin. Bioconjug Chem 2007;18:836-43
  • Zeineldin R, Al- Haik M, Hudson LG. Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. Nano Lett 2009;9:751-7
  • Pantic I. Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches. Rev Adv Mater Sci 2010;26:67-73
  • Santra S, Kaittanis C, Grimm J, Perez JM. Drug/Dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009;16:1862-8
  • Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ. Magnetic nanoparticle – peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 2008;130:10258-62
  • Farell D, Ptak K, Panaro NJ, Grodniski P. Nanotechnology- based cancer therapeutics – Promise and challenge- Lessons learned through the NCI alliance for nanotechnology in cancer. Pharm Res 2010;28:273-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.