754
Views
58
CrossRef citations to date
0
Altmetric
Reviews

Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders

, , &
Pages 435-450 | Received 09 Oct 2015, Accepted 02 Dec 2015, Published online: 03 Feb 2016

References

  • Lipinski C. Poor aqueous solubility - an industry wide problem in drug discovery. Am Pharm Rev. 2002;5:82–85.
  • Benet LZ. Predicting DMPK of NMEs: what do we need in terms of science and tools? New England Drug Metabolism Discussion Group: Gerald Miwa Retirement Symposium; 2007 Apr 9.
  • Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–122. DOI:10.1016/j.ijpharm.2004.07.019.
  • Brough C, Williams RO. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm. 2013;453:157–166. DOI:10.1016/j.ijpharm.2013.05.061.
  • Hafner A, Lovrić J, Lakoš GP, et al. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine. 2014;9:1005–1023.
  • Chingunpituk J. Nanosuspension technology for drug delivery. Walailak J Sci Tech. 2007;4:139–153.
  • Wong J, Brugger A, Khare A, et al. Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Deliv Rev. 2008;60:939–954. DOI:10.1016/j.addr.2007.11.008.
  • Yue PF, Li Y, Wan J, et al. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int J Pharm. 2013;454:269–277. DOI:10.1016/j.ijpharm.2013.06.050.
  • Lindfors L, Skantze P, Skantze U, et al. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir. 2007;23:9866–9874. DOI:10.1021/la700811b.
  • Nuttan MTH, Reddy IK. General principles of suspensions. In: Kurshreshtha AK, Singh ON, Michael Wall G, editors. Pharmaceutical suspensions. New York: Springer; 2010. p. 39–66.
  • Ghosh I, Schenck D, Bose S, et al. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci. 2012;47:718–728. DOI:10.1016/j.ejps.2012.08.011.
  • Van Eerdenbrugh B, Vermant J, Martens JA, et al. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci. 2009;98:2091–2103. DOI:10.1002/jps.21563.
  • Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62:3–16. DOI:10.1016/j.ejpb.2005.05.009.
  • Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399:129–139. DOI:10.1016/j.ijpharm.2010.07.044.
  • Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99:4940–4954. DOI:10.1002/jps.22217.
  • Nernst W. Theorie der reaktionsgeschwindigkeit in heterogenen systemen. Z Phys Chem. 1904;47:52.
  • Brunner E. Reaktionsgeschwindigkeit in heterogenen systemen. Z Phys Chem. 1904;43:56–102.
  • Buckton G, Beezer AE. The relationship between particle size and solubility. Int J Pharm. 1992;82:R7–10. DOI:10.1016/0378-5173(92)90184-4.
  • Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci. 2009;36:502–510. DOI:10.1016/j.ejps.2008.12.002.
  • Kesisoglou F, Panmai S, Wu Y. Nanosizing oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–644. DOI:10.1016/j.addr.2007.05.003.
  • Muller RH, Gohla S, Keck CM. State of the art of nanocrystals- special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78:1–9. DOI:10.1016/j.ejpb.2011.01.007.
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3:785–796. DOI:10.1038/nrd1494.
  • Jacobs C, Kayser O, Müller RH. Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. Int J Pharm. 2001;214:3–7. DOI:10.1016/S0378-5173(00)00622-0.
  • Kayser O. A new approach for targeting to cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications. Int J Pharm. 2001;214:83–85. DOI:10.1016/S0378-5173(00)00640-2.
  • Verma S, Burgess D. Solid nanosuspensions: the emerging technology and pharmaceutical applications as nanomedicine. In: Kurshreshtha AK, Singh ON, Michael Wall G, editors. Pharmaceutical suspensions. New York: Springer; 2010. p. 285–318.
  • Gao L, Liu G, Wang X, et al. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm. 2011;404:231–237. DOI:10.1016/j.ijpharm.2010.11.009.
  • Ben Zirar S, Astier A, Muchow M, et al. Comparison of nanosuspensions and hydroxypropyl-β-cyclodextrin complex of melarsoprol: pharmacokinetics and tissue distribution in mice. Eur J Pharm Biopharm. 2008;70:649–656. DOI:10.1016/j.ejpb.2008.05.012.
  • Niwa T, Miura S, Danjo K. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies - development of particle design method. Int J Pharm. 2011;405:218–227. DOI:10.1016/j.ijpharm.2010.12.013.
  • Moschwitzer J. Special aspects of nanomedicines: viewpoint from the industry. European Medicines Agency 1st International Workshop on Nanomedicine; 2010 Sept. 2–3.
  • Yang JZ, Young AL, Chiang P-C, et al. Fluticasone and budesonide nanosuspensions for pulmonary delivery: preparation, characterization and pharmacokinetic studies. J Pharm Sci. 2008;97:4869–4878. DOI:10.1002/jps.21380.
  • Britland S, Finter W, Chrystyn H, et al. Droplet aerodynamics, cellular uptake and efficacy of a nebulizable corticosteroid nanosuspension are superior to a micronized dosage form. Biotechnol Prog. 2012;28:1152–1159. DOI:10.1002/btpr.1616.
  • Chiang P-C, Alsup JW, Lai Y, et al. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res Lett. 2009;4:254–261. DOI:10.1007/s11671-008-9234-1.
  • Rundfeldt C, Steckel H, Scherliess H, et al. Inhalable highly concentrated itraconazole nanosuspension for the treatment of bronchopulmonary aspergillosis. Eur J Pharm Biopharm. 2013;83:44–53. DOI:10.1016/j.ejpb.2012.09.018.
  • Peltonen L, Valo H, Kolakovic R, et al. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv. 2010;7:705–719. DOI:10.1517/17425241003716802.
  • Zhang J, Wu L, Chan HK, et al. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev. 2011;63:441–455. DOI:10.1016/j.addr.2010.11.002.
  • Sinha B, Müller RH, Möschwitzer JP. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals. Int J Pharm. 2013;458:315–323. DOI:10.1016/j.ijpharm.2013.10.025.
  • Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63:456–469. DOI:10.1016/j.addr.2011.02.001.
  • Kobierski S, Ofori-Kwakye K, Müller RH, et al. Resveratrol nanosuspensions: interaction of preservatives with nanocrystal production. Pharmazie. 2011;66:942–947.
  • Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56:827–840. DOI:10.1211/0022357023691.
  • Van Eerdenbrugh B, Van Den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364:64–75. DOI:10.1016/j.ijpharm.2008.07.023.
  • Pulmonary drug delivery systems: technologies and global markets. BCC Research; 2014 [cited 2015 Oct 2]. Available from: www.bccresearch.com/market-research/healthcare/pulmonary-drug-delivery-systems-hlc094b.html
  • Geller DE. Comparing clinical features of the nebulizer, metered-dose inhaler and dry powder inhaler. Respir Care. 2005;50:1313–1322.
  • Heyder J, Gebhart J, Rudolf G, et al. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci. 1986;17:811–825. DOI:10.1016/0021-8502(86)90035-2.
  • Byron P. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75:433–438. DOI:10.1002/(ISSN)1520-6017.
  • Rogueda P, Traini D. The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects. Expert Opin Drug Deliv. 2007;4:595–606. DOI:10.1517/edd.2007.4.issue-6.
  • Watts AB, Williams III RB. Nanoparticles for pulmonary delivery. In: Smyth H, Hickey A, editors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 335–364.
  • El-Gendy N, Gorman EM, Munson EJ, et al. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci. 2009;98:2731–2746. DOI:10.1002/jps.v98:8.
  • Masters K. Spray drying handbook. 5th ed. Essex: Longman Scientific and Technical; 1991.
  • Zuo B, Sun Y, Li H, et al. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int J Pharm. 2013;455:267–275. DOI:10.1016/j.ijpharm.2013.07.021.
  • Freag MS, Elnaggar YSR, Abdallah OY. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Int J Pharm. 2013;454:462–471. DOI:10.1016/j.ijpharm.2013.06.059.
  • Chawla A, Taylor KMG, Newton JM, et al. Production of spray dried salbutamol sulphate for use in dry powder aerosol formulation. Int J Pharm. 1994;108:233–240. DOI:10.1016/0378-5173(94)90132-5.
  • Chow AHL, Tong HHY, Chattopadhyay P, et al. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24:411–437. doi:10.1007/s11095-006-9174-3.
  • Pilcer G, Vanderbist F, Amighi K. Spray-dried carrier-free dry powder tobramycin formulations with improved dispersion properties. J Pharm Sci. 2009;98:1463–1475. DOI:10.1002/jps.v98:4.
  • Yamasaki K, Kwok PCL, Fukushige K, et al. Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former. Int J Pharm. 2011;420:34–42. DOI:10.1016/j.ijpharm.2011.08.005.
  • Pomázi A, Buttini F, Ambrus R, et al. Effect of polymers for aerolization properties of mannitol-based microcomposites containing meloxicam. Eur Polym J. 2013;49:2518–2527. DOI:10.1016/j.eurpolymj.2013.03.017.
  • Sou T, Orlando L, McIntosh MP, et al. Investigating the interactions of amino acid components on a mannitol-based spray-dried powder formulation for pulmonary delivery: a design of experiment approach. Int J Pharm. 2011;421:220–229. DOI:10.1016/j.ijpharm.2011.09.028.
  • Duret C, Wauthoz N, Sebti T, et al. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Int J Nanomedicine. 2012;7:5475–5489. DOI:10.2147/IJN.S30631.
  • Maa YF, Nguyen PA, Sweeney T, et al. Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res. 1999;16:249–254. DOI:10.1023/A:1018828425184.
  • Mumenthaler M, Leuenberger H. Atmospheric spray-freeze drying: a suitable alternative in freeze-drying technology. Int J Pharm. 1991;72:97–110. DOI:10.1016/0378-5173(91)90047-R.
  • Niwa T, Danjo K. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Eur J Pharm Sci. 2013;50:272–281. DOI:10.1016/j.ejps.2013.07.014.
  • Cheow WS, Ng MLL, Kho K, et al. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Int J Pharm. 2011;404:289–300. DOI:10.1016/j.ijpharm.2010.11.021.
  • Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21:191–200.
  • Fu Q, Sun J, Zhang D, et al. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;109:161–166. DOI:10.1016/j.colsurfb.2013.01.066.
  • Lai F, Pini E, Corrias F, et al. Formulation strategy and evaluation of nanocrystal piroxicam orally disintegrating tablets manufacturing by freeze-drying. Int J Pharm. 2014;467:27–33. DOI:10.1016/j.ijpharm.2014.03.047.
  • El-Gendy N, Pornputtapitak W, Berkland C. Nanoparticle agglomerates of fluticasone propionate in combination with albuterol sulfate as dry powder aerosols. Eur J Pharm Sci. 2011;44:522–533. DOI:10.1016/j.ejps.2011.09.014.
  • Plumley C, Gorman EM, El-Gendy N, et al. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm. 2009;369:136–143. DOI:10.1016/j.ijpharm.2008.10.016.
  • Kayaert P, Anné M, Van den Mooter G. Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in-vitro release from sugar beads. J Pharm Pharmacol. 2011;63:1446–1453. DOI:10.1111/j.2042-7158.2011.01351.x.
  • He W, Lu Y, Qi J, et al. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution. Int J Nanomedicine. 2013;8:3119–3128. DOI:10.2147/IJN.S37465.
  • Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm. 2006;62:282–287. DOI:10.1016/j.ejpb.2005.09.005.
  • Figueroa CE, Bose S. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions. Eur J Pharm Biopharm. 2013;85:1046–1055. DOI:10.1016/j.ejpb.2013.07.015.
  • Vergote G, Vervaet C, Van Driessche I, et al. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. Int J Pharm. 2001;219:81–87. DOI:10.1016/S0378-5173(01)00628-7.
  • Vergote G, Vervaet C, Van Driessche I, et al. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen. Int J Pharm. 2002;240:79–84. DOI:10.1016/S0378-5173(02)00114-X.
  • Laaksonen T, Liu P, Rahikkala A, et al. Intact nanoparticulate indomethacin in fast-dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharm Res. 2011;28:2403–2411. DOI:10.1007/s11095-011-0456-z.
  • Eerikäinen H, Watanabe W, Kauppinen EI, et al. Aerosol flow reactor method for synthesis of drug nanoparticles. Eur J Pharm Biopharm. 2003;55:357–360. DOI:10.1016/S0939-6411(03)00005-5.
  • Raula J, Rahikkala A, Halkola T, et al. Coated particle assemblies for the concomitant pulmonary administration of budesonide and salbutamol sulphate. Int J Pharm. 2013;441:248–254. DOI:10.1016/j.ijpharm.2012.11.036.
  • Arun JJ, Lodha R, Kabra SK. Bronchodilatory effect of inhaled budesonide/formoterol and budesonide/salbutamol in acute asthma: a double-blind, randomized controlled trial. BMC Pediatr. 2012;12:21. DOI:10.1186/1471-2431-12-34.
  • Boehm RD, Miller PR, Daniels J, et al. Inkjet printing for pharmaceutical applications. Mater Today. 2014;17:247–252. DOI:10.1016/j.mattod.2014.04.027.
  • Mueannoom W, Srinongphan A, Taylor KMG, et al. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulfate for inhalation. Eur J Pharm Biopharm. 2012;80:149–155. DOI:10.1016/j.ejpb.2011.09.016.
  • Pardeike J, Strohmeier DM, Schrödl N, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420:93–100. DOI:10.1016/j.ijpharm.2011.08.005.
  • Genina N, Fors D, Vakili H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012;47:615–623. DOI:10.1016/j.ejps.2012.07.020.
  • Palo M, Kolakovic R, Laaksonen T, et al. Fabrication of drug-loaded edible carrier substrates from nanosuspensions by flexographic printing. Int J Pharm. 2015;494:603–610. [cited Jan 16 2015]. DOI:10.1016/j.ijpharm.2015.01.027.
  • Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;25:2302–2308. DOI:10.1007/s11095-008-9625-0.
  • Beirowski J, Inghelbrecht S, Arien A, et al. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution. J Pharm Sci. 2011;100:1958–1968. DOI:10.1002/jps.22425.
  • Van Eerdenbrugh B, Froyen L, Van Humbeeck J, et al. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci. 2008;35:127–135. DOI:10.1016/j.ejps.2008.06.009.
  • Zhang X, Guan J, Ni R, et al. Preparation and solidification of redispersible nanosuspensions. J Pharm Sci. 2014;103:2166–2176. DOI:10.1002/jps.24015.
  • Chung NO, Lee MK, Lee J. Mechanism of freeze-drying drug nanosuspensions. Int J Pharm. 2012;437:42–50. DOI:10.1016/j.ijpharm.2012.07.068.
  • Dong Y, Ng WK, Hu J, et al. Clay as a matrix former for spray drying of drug nanosuspensions. Int J Pharm. 2014;465:83–89. DOI:10.1016/j.ijpharm.2014.02.025.
  • Van Eerdenbrugh B, Froyen L, Van Humbeeck J, et al. Alternative matrix formers for nanosuspension solidification: dissolution performance and X-ray microanalysis as an evaluation tool for powder dispersion. Eur J Pharm Sci. 2008;35:344–353. DOI:10.1016/j.ejps.2008.08.003.
  • Kumar S, Gokhale R, Burgess DJ. Sugars as bulking agents to prevent nano-crystal aggregation during spray or freeze-drying. Int J Pharm. 2014;471:303–311. DOI:10.1016/j.ijpharm.2014.05.060.
  • Bosch WH, Ostrander KD, Cooper ER. Aerosols comprising nanoparticle drugs. WO00/27363. 1999.
  • Hong JN, Van Oort MM Aggregate nanoparticulate medicament formulations, manufacture and use thereof. EP2627317A2. 2013.
  • Malamatari M, Somavarapu S, Bloxham M, et al. Nanoparticle agglomerates of indomethacin: the role of poloxamers and matrix former on their dissolution and aerosolisation efficiency. Int J Pharm. 2015;495:516–526. DOI:10.1016/j.ijpharm.2015.09.013.
  • Salem HF, Abdelrahim ME, Abo Eid K, et al. Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler. Int J Nanomedicine. 2011;6:311–320. DOI:10.2147/IJN.S14309.
  • Konkel J, Myerson AL. Empirical molecular modelling of suspension stabilisation with polysorbate 80. Mol Simul. 2009;34:1353–1357. DOI:10.1080/08927020802512195.
  • Verma S, Huey BD, Burgess DJ. Scanning probe microscopy method for nanosuspension stabiliser selection. Langmuir. 2009;25:12481–12487. DOI:10.1021/la9016432.
  • Verma S, Lan Y, Gokhale R, et al. Quality by design approach to understand the process of nanosuspension preparation. Int J Pharm. 2009;377:185–198.
  • Forbes B, Richer NH, Buttini F. Dissolution: a critical performance characteristic of inhaled products? In: Nokhodchi A, Martin GP, editors. Pulmonary drug delivery: advances and challenges. West Sussex: Wiley; 2015. p. 223–240.
  • Tolman JA, Williams III RO. Advances in the pulmonary delivery of poorly water-soluble drugs: influence of solubilization on pharmacokinetic properties. Drug Dev Ind Pharm. 2010;36:1–30. DOI:10.3109/03639040903092319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.