276
Views
84
CrossRef citations to date
0
Altmetric
Review

Tailoring antibodies for radionuclide delivery

&
Pages 53-70 | Published online: 22 Dec 2005

Bibliography

  • BRITZ-CUNNINGHAM SH, ADELSTEIN SJ: Molecular targeting with radionuclides: state of the science. J. Nucl. Med. (2003) 44(12):1945-1961.
  • WU AM, SENTER PD: Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. (2005) 23(9):1137-1146.
  • MILENIC DE, BRADY ED, BRECHBIEL MW: Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. (2004) 3(6):488-499.
  • MCDEVITT MR, SGOUROS G, FINN RD et al.: Radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. (1998) 25(9):1341-1351.
  • HASSFJELL S, BRECHBIEL MW: The development of the alpha-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications. Chem. Rev. (2001) 101(7):2019-2036.
  • MAKRIGIORGOS G, ADELSTEIN SJ, KASSIS AI: Auger electron emitters: insights gained from in vitro experiments. Radiat. Environ. Biophys. (1990) 29(2):75-91.
  • MICHEL RB, BRECHBIEL MW, MATTES MJ: A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. J. Nucl. Med. (2003) 44(4):632-640.
  • JAIN RK: Tumor physiology and antibody delivery. Front. Radiat. Ther. Oncol. (1990) 24:32-46.
  • BUCHSBAUM DJ: Experimental radioimmunotherapy. Semin. Radiat. Oncol. (2000) 10(2):156-167.
  • PRESS OW, RASEY J: Principles of radioimmunotherapy for hematologists and oncologists. Semin. Oncol. (2000) 27(6 Suppl. 12):62-73.
  • DENARDO SJ, WILLIAMS LE, LEIGH BR, WAHL RL: Choosing an optimal radioimmunotherapy dose for clinical response. Cancer (2002) 94(4 Suppl.):1275-1286.
  • MCLAUGHLIN P, GRILLO-LOPEZ AJ, LINK BK et al.: Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. (1998) 16(8):2825-2833.
  • KAMINSKI MS, ZELENETZ AD, PRESS OW et al.: Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J. Clin. Oncol. (2001) 19(19):3918-3928.
  • KAMINSKI MS, ESTES J, ZASADNY KR et al.: Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. (2000) 96(4):1259-1266.
  • WISEMAN GA, WHITE CA, SPARKS RB et al.: Biodistribution and dosimetry results from a Phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit. Rev. Oncol. Hematol. (2001) 39(1-2):181-194.
  • SHARKEY RM, MOTTA-HENNESSY C, PAWLYK D, SIEGEL JA, GOLDENBERG DM: Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. Cancer Res. (1990) 50(8):2330-2336.
  • WITZIG TE: The use of ibritumomab tiuxetan radioimmunotherapy for patients with relapsed B-cell non-Hodgkin’s lymphoma. Semin. Oncol. (2000) 27(6 Suppl. 12):74-78.
  • PRESS OW, APPELBAUM FR, EARY JF, BERNSTEIN ID: Radiolabeled antibody therapy of lymphomas. Important Adv. Oncol. (1995):157-171.
  • VOSE JM: Bexxar: novel radioimmunotherapy for the treatment of low-grade and transformed low-grade non-Hodgkin’s lymphoma. Oncologist (2004) 9(2):160-172.
  • ANSELL SM, RISTOW KM, HABERMANN TM, WISEMAN GA, WITZIG TE: Subsequent chemotherapy regimens are well tolerated after radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for non-Hodgkin’s lymphoma. J. Clin. Oncol. (2002) 20(18):3885-3890.
  • SCHROFF RW, FOON KA, BEATTY SM, OLDHAM RK, MORGAN AC Jr: Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res. (1985) 45(2):879-885.
  • COURTENAY-LUCK NS, EPENETOS AA, MOORE R et al.: Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res. (1986) 46(12 Pt 1):6489-6493.
  • GOLDMAN-LEIKIN RE, KAPLAN EH, ZIMMER AM, KAZIKIEWICZ J, MANZEL LJ, ROSEN ST: Long-term persistence of human anti-murine antibody responses following radioimmunodetection and radioimmunotherapy of cutaneous T-cell lymphoma patients using 131I-T101. Exp. Hematol. (1988) 16(10):861-864.
  • PRESS OW, EARY JF, APPELBAUM FR et al.: Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N. Engl. J. Med. (1993) 329(17):1219-1224.
  • LIU SY, EARY JF, PETERSDORF SH et al.: Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J. Clin. Oncol. (1998) 16(10):3270-3278.
  • SHARKEY RM, GOLDENBERG DM: Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J. Nucl. Med. (2005) 46(Suppl. 1):115S-127S.
  • ADAMS GP, WEINER LM: Monoclonal antibody therapy of cancer. Nat. Biotechnol. (2005) 23(9):1147-1157.
  • BEHR TM, LIERSCH T, GREINER-BECHERT L et al.: Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer (2002) 94(4 Suppl.):1373-1381.
  • LIERSCH T, MELLER J, KULLE B et al.: Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J. Clin. Oncol. (2005) 23(27):6763-6770.
  • HUHALOV A, CHESTER KA: Engineered single chain antibody fragments for radioimmunotherapy. Q J. Nucl. Med. Mol. Imaging (2004) 48(4):279-288.
  • TODOROVSKA A, ROOVERS RC, DOLEZAL O, KORTT AA, HOOGENBOOM HR, HUDSON PJ: Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods (2001) 248(1-2):47-66.
  • WU AM, YAZAKI PJ: Designer genes: recombinant antibody fragments for biological imaging. Q J. Nucl. Med. (2000) 44(3):268-283.
  • MIRICK GR, BRADT BM, DENARDO SJ, DENARDO GL: A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J. Nucl. Med. Mol. Imaging (2004) 48(4):251-257.
  • GRIFFITHS AD, WILLIAMS SC, HARTLEY O et al.: Isolation of high affinity human antibodies directly from large synthetic repertoires. Embo J. (1994) 13(14):3245-3260.
  • BRADBURY AR, MARKS JD: Antibodies from phage antibody libraries. J. Immunol. Methods (2004) 290(1-2):29-49.
  • DAUGHERTY PS, CHEN G, OLSEN MJ, IVERSON BL, GEORGIOU G: Antibody affinity maturation using bacterial surface display. Protein Eng. (1998) 11(9):825-832.
  • FELDHAUS MJ, SIEGEL RW: Yeast display of antibody fragments: a discovery and characterization platform. J. Immunol. Methods (2004) 290(1-2):69-80.
  • LIPOVSEK D, PLUCKTHUN A: In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods (2004) 290(1-2):51-67.
  • MILENIC DE, YOKOTA T, FILPULA DR et al.: Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. (1991) 51(23 Pt 1):6363-6371.
  • YOKOTA T, MILENIC DE, WHITLOW M, SCHLOM J: Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. (1992) 52(12):3402-3408.
  • KURTZMAN AL, GOVINDARAJAN S, VAHLE K, JONES JT, HEINRICHS V, PATTEN PA: Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr. Opin. Biotechnol. (2001) 12(4):361-370.
  • MAYNARD J, GEORGIOU G: Antibody engineering. Ann. Rev Biomed Eng. (2000) 2:339-376.
  • WORN A, PLUCKTHUN A: Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. (2001) 305(5):989-1010.
  • CHESTER KA, BEGENT RH, ROBSON L et al.: Phage libraries for generation of clinically useful antibodies. Lancet (1994) 343(8895):455-456.
  • GRAFF CP, CHESTER K, BEGENT R, WITTRUP KD: Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng. Des Sel. (2004) 17(4):293-304.
  • ADAMS GP, SCHIER R, MCCALL AM et al.: Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer (1998) 77(9):1405-1412.
  • VITI F, TARLI L, GIOVANNONI L, ZARDI L, NERI D: Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. (1999) 59(2):347-352.
  • KORTT AA, LAH M, ODDIE GW et al.: Single-chain Fv fragments of anti-neuraminidase antibody NC10 containing five- and ten-residue linkers form dimers and with zero-residue linker a trimer. Protein Eng. (1997) 10(4):423-433.
  • ILIADES P, KORTT AA, HUDSON PJ: Triabodies: single chain Fv fragments without a linker form trivalent trimers. FEBS Lett. (1997) 409(3):437-441.
  • DOLEZAL O, DE GORI R, WALTER M et al.: Single-chain Fv multimers of the anti-neuraminidase antibody NC10: the residue at position 15 in the V(L) domain of the scFv-0 (V(L)-V(H)) molecule is primarily responsible for formation of a tetramer-trimer equilibrium. Protein Eng. (2003) 16(1):47-56.
  • KHAWLI LA, BIELA B, HU P, EPSTEIN AL: Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors. Hybrid Hybridomics (2003) 22(1):1-9.
  • GOEL A, COLCHER D, BARANOWSKA-KORTYLEWICZ J et al.: Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res. (2000) 60(24):6964-6971.
  • GOEL A, AUGUSTINE S, BARANOWSKA-KORTYLEWICZ J et al.: Single-dose versus fractionated radioimmunotherapy of human colon carcinoma xenografts using 131I-labeled multivalent CC49 single-chain fvs. Clin. Cancer Res. (2001) 7(1):175-184.
  • WILLUDA J, KUBETZKO S, WAIBEL R, SCHUBIGER PA, ZANGEMEISTER-WITTKE U, PLUCKTHUN A: Tumor targeting of mono-, di-, and tetravalent anti-p185(HER-2) miniantibodies multimerized by self-associating peptides. J. Biol. Chem. (2001) 276(17):14385-14392.
  • PACK P, MULLER K, ZAHN R, PLUCKTHUN A: Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J. Mol. Biol. (1995) 246(1):28-34.
  • KOSTELNY SA, COLE MS, TSO JY: Formation of a bispecific antibody by the use of leucine zippers. J. Immunol. (1992) 148(5):1547-1553.
  • MCGREGOR DP, MOLLOY PE, CUNNINGHAM C, HARRIS WJ: Spontaneous assembly of bivalent single chain antibody fragments in Escherichia coli. Mol. Immunol. (1994) 31(3):219-226.
  • BERESFORD GW, PAVLINKOVA G, BOOTH BJ, BATRA SK, COLCHER D: Binding characteristics and tumor targeting of a covalently linked divalent CC49 single-chain antibody. Int. J. Cancer (1999) 81(6):911-917.
  • COLCHER D, BIRD R, ROSELLI M et al.: In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J. Natl. Cancer Inst. (1990) 82(14):1191-1197.
  • ADAMS GP, MCCARTNEY JE, TAI MS et al.: Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. (1993) 53(17):4026-4034.
  • VERHAAR MJ, CHESTER KA, KEEP PA et al.: A single chain Fv derived from a filamentous phage library has distinct tumor targeting advantages over one derived from a hybridoma. Int. J. Cancer (1995) 61(4):497-501.
  • SCHIER R, MARKS JD, WOLF EJ et al.: In vitro and in vivo characterization of a human anti-c-erbB-2 single-chain Fv isolated from a filamentous phage antibody library. Immunotechnology (1995) 1(1):73-81.
  • WU AM, CHEN W, RAUBITSCHEK A et al.: Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology (1996) 2(1):21-36.
  • BEHR TM, SHARKEY RM, SGOUROS G et al.: Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates: improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry. Cancer (1997) 80(12 Suppl.):2591-2610.
  • TSAI SW, LI L, WILLIAMS LE, ANDERSON AL, RAUBITSCHEK AA, SHIVELY JE: Metabolism and renal clearance of 111In-labeled DOTA-conjugated antibody fragments. Bioconjug. Chem. (2001) 12(2):264-270.
  • HOLLIGER P, PROSPERO T, WINTER G: ‘Diabodies’: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA (1993) 90(14):6444-6448.
  • HU S, SHIVELY L, RAUBITSCHEK A et al.: Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. (1996) 56(13):3055-3061.
  • SLAVIN-CHIORINI DC, KASHMIRI SV, SCHLOM J et al.: Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res. (1995) 55(23 Suppl.):5957s-5967s.
  • XU X, CLARKE P, SZALAI G et al.: Targeting and therapy of carcinoembryonic antigen-expressing tumors in transgenic mice with an antibody-interleukin 2 fusion protein. Cancer Res. (2000) 60(16):4475-4484.
  • BORSI L, BALZA E, BESTAGNO M et al.: Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer (2002) 102(1):75-85.
  • KENANOVA V, OLAFSEN T, CROW DM et al.: Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. (2005) 65(2):622-631.
  • ADAMS GP, MCCARTNEY JE, WOLF EJ et al.: Enhanced tumor specificity of 741F8-1 (sFv’)2, an anti-c-erbB-2 single-chain Fv dimer, mediated by stable radioiodine conjugation. J. Nucl. Med. (1995) 36(12):2276-2281.
  • GOEL A, BERESFORD GW, COLCHER D et al.: Divalent forms of CC49 single-chain antibody constructs in Pichia pastoris: expression, purification, and characterization. J. Biochem. (2000) 127(5):829-836.
  • NIELSEN UB, ADAMS GP, WEINER LM, MARKS JD: Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. (2000) 60(22):6434-6440.
  • WU AM, WILLIAMS LE, ZIERAN L et al.: Anti-carcinoembryonic antigen (CEA) diabody for rapid tumor targeting and imaging. Tumor Targeting (1999) 4:47-58.
  • YAZAKI PJ, WU AM, TSAI SW et al.: Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug. Chem. (2001) 12(2):220-228.
  • OLAFSEN T, CHEUNG CW, YAZAKI PJ et al.: Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng. Des. Sel. (2004) 17(1):21-27.
  • ADAMS GP, SHALLER CC, DADACHOVA E et al.: A single treatment of yttrium-90-labeled CHX-A’-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res. (2004) 64(17):6200-6206.
  • SUNDARESAN G, YAZAKI PJ, SHIVELY JE et al.: 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J. Nucl. Med. (2003) 44(12):1962-1969.
  • ROBINSON MK, DOSS M, SHALLER C et al.: Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. (2005) 65(4):1471-1478.
  • PLUCKTHUN A, PACK P: New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology (1997) 3(2):83-105.
  • WU AM, YAZAKI PJ, TSAI S et al.: High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc. Natl. Acad. Sci. USA (2000) 97(15):8495-8500.
  • PARK JM, YANG X, PARK JJ, PRESS OW, PRESS MF: Assessment of novel anti-p185HER-2 monoclonal antibodies for internalization-dependent therapies. Hybridoma (1999) 18(6):487-495.
  • OLAFSEN T, TAN GJ, CHEUNG CW et al.: Characterization of engineered anti-p185HER-2 (scFv-CH3)2 antibody fragments (minibodies) for tumor targeting. Protein Eng. Des Sel. (2004) 17(4):315-323.
  • OLAFSEN T, KENANOVA VE, SUNDARESAN G et al.: Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res. (2005) 65(13):5907-5916.
  • ARNDT KM, PELLETIER JN, MULLER KM, ALBER T, MICHNICK SW, PLUCKTHUN A: A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library ensemble. J. Mol. Biol. (2000) 295(3):627-639.
  • GHETIE V, HUBBARD JG, KIM JK, TSEN MF, LEE Y, WARD ES: Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur. J. Immunol. (1996) 26(3):690-696.
  • JUNGHANS RP, ANDERSON CL: The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. USA (1996) 93(11):5512-5516.
  • ISRAEL EJ, WILSKER DF, HAYES KC, SCHOENFELD D, SIMISTER NE: Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology (1996) 89(4):573-578.
  • MEDESAN C, MATESOI D, RADU C, GHETIE V, WARD ES: Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J. Immunol. (1997) 158(5):2211-2217.
  • KIM JK, FIRAN M, RADU CG, KIM CH, GHETIE V, WARD ES: Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur. J. Immunol. (1999) 29(9):2819-2825.
  • SHIELDS RL, NAMENUK AK, HONG K et al.: High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. (2001) 276(9):6591-6604.
  • HORNICK JL, SHARIFI J, KHAWLI LA et al.: Single amino acid substitution in the Fc region of chimeric TNT-3 antibody accelerates clearance and improves immunoscintigraphy of solid tumors. J. Nucl. Med. (2000) 41(2):355-362.
  • WEST AP Jr, BJORKMAN PJ: Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,). Biochemistry (2000) 39(32):9698-9708.
  • MARTIN WL, WEST AP Jr, GAN L, BJORKMAN PJ: Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol. Cell. (2001) 7(4):867-877.
  • BEGENT RH, VERHAAR MJ, CHESTER KA et al.: Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med. (1996) 2(9):979-984.
  • LARSON SM, EL-SHIRBINY AM, DIVGI CR et al.: Single chain antigen binding protein (sFv CC49): first human studies in colorectal carcinoma metastatic to liver. Cancer (1997) 80(12 Suppl.):2458-2468.
  • MAYER A, TSIOMPANOU E, O’MALLEY D et al.: Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody. Clin. Cancer Res. (2000) 6(5):1711-1719.
  • LANE DM, EAGLE KF, BEGENT RH et al.: Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labelled antibody to carcinoembryonic antigen: Phase I/II study with comparative biodistribution of intact and F(ab’)2 antibodies. Br. J. Cancer (1994) 70(3):521-525.
  • BEHR TM, GOLDENBERG DM, BECKER W: Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur. J. Nucl. Med. (1998) 25(2):201-212.
  • SANTIMARIA M, MOSCATELLI G, VIALE GL et al.: Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. (2003) 9(2):571-579.
  • WONG JY, CHU DZ, WILLIAMS LE et al.: Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin. Cancer Res. (2004) 10(15):5014-5021.
  • HNATOWICH DJ, VIRZI F, RUSCKOWSKI M: Investigations of avidin and biotin for imaging applications. J. Nucl. Med. (1987) 28(8):1294-1302.
  • STOLDT HS, AFTAB F, CHINOL M et al.: Pretargeting strategies for radio-immunoguided tumour localisation and therapy. Eur. J. Cancer (1997) 33(2):186-192.
  • WU AM: Tools for pretargeted radioimmunotherapy. Cancer Biother. Radiopharm. (2001) 16(2):103-108.
  • CREMONESI M, FERRARI M, CHINOL M et al.: Three-step radioimmunotherapy with yttrium-90 biotin: dosimetry and pharmacokinetics in cancer patients. Eur. J. Nucl. Med. (1999) 26(2):110-120.
  • CHEUNG NK, MODAK S, LIN Y et al.: Single-chain Fv-streptavidin substantially improved therapeutic index in multistep targeting directed at disialoganglioside GD2. J. Nucl. Med. (2004) 45(5):867-877.
  • DUBEL S, BREITLING F, KONTERMANN R, SCHMIDT T, SKERRA A, LITTLE M: Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J. Immunol. Methods (1995) 178(2):201-209.
  • SCHULTZ J, LIN Y, SANDERSON J et al.: A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res. (2000) 60(23):6663-6669.
  • ZHANG M, ZHANG Z, GARMESTANI K et al.: Pretarget radiotherapy with an anti-CD25 antibody-streptavidin fusion protein was effective in therapy of leukemia/lymphoma xenografts. Proc. Natl. Acad. Sci. USA (2003) 100(4):1891-1895.
  • GOSHORN S, SANDERSON J, AXWORTHY D, LIN Y, HYLARIDES M, SCHULTZ J: Preclinical evaluation of a humanized NR-LU-10 antibody-streptavidin fusion protein for pretargeted cancer therapy. Cancer Biother. Radiopharm. (2001) 16(2):109-123.
  • LEWIS MR, ZHANG J, JIA F et al.: Biological comparison of 149Pm-, 166Ho-, and 177Lu-DOTA-biotin pretargeted by CC49 scFv-streptavidin fusion protein in xenograft-bearing nude mice. Nucl. Med. Biol. (2004) 31(2):213-223.
  • HE J, LIU G, GUPTA S, ZHANG Y, RUSCKOWSKI M, HNATOWICH DJ: Amplification targeting: a modified pretargeting approach with potential for signal amplification-proof of a concept. J. Nucl. Med. (2004) 45(6):1087-1095.
  • LE DOUSSAL JM, MARTIN M, GAUTHEROT E, DELAAGE M, BARBET J: In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J. Nucl. Med. (1989) 30(8):1358-1366.
  • CHANG CH, SHARKEY RM, ROSSI EA et al.: Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol. Cancer Ther. (2002) 1(7):553-563.
  • KARACAY H, SHARKEY RM, MCBRIDE WJ et al.: Pretargeting for cancer radioimmunotherapy with bispecific antibodies: role of the bispecific antibody’s valency for the tumor target antigen. Bioconjug. Chem. (2002) 13(5):1054-1070.
  • ROSSI EA, SHARKEY RM, MCBRIDE W et al.: Development of new multivalent-bispecific agents for pretargeting tumor localization and therapy. Clin. Cancer Res. (2003) 9(10 Pt 2):3886S-3896S.
  • SHARKEY RM, KARACAY H, CARDILLO TM et al.: Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin. Cancer Res. (2005) 11(19 Pt 2):7109s-7121s.
  • ROSSI EA, CHANG CH, LOSMAN MJ et al.: Pretargeting of carcinoembryonic antigen-expressing cancers with a trivalent bispecific fusion protein produced in myeloma cells. Clin. Cancer Res. (2005) 11(19 Pt 2):7122s-7129s.
  • SHARKEY RM, MCBRIDE WJ, KARACAY H et al.: A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res. (2003) 63(2):354-363.
  • AXWORTHY DB, RENO JM, HYLARIDES MD et al.: Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc. Natl. Acad. Sci. USA (2000) 97(4):1802-1807.
  • BREITZ HB, WEIDEN PL, BEAUMIER PL et al.: Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J. Nucl. Med. (2000) 41(1):131-140.
  • BREITZ HB, FISHER DR, GORIS ML et al.: Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NR-LU-10/streptavidin. Cancer Biother. Radiopharm. (1999) 14(5):381-395.
  • KNOX SJ, GORIS ML, TEMPERO M et al.: Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin. Cancer Res. (2000) 6(2):406-414.
  • PAGANELLI G, BARTOLOMEI M, FERRARI M et al.: Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: Phase I study and preliminary therapeutic results. Cancer Biother. Radiopharm. (2001) 16(3):227-235.
  • GRANA C, BARTOLOMEI M, HANDKIEWICZ D et al.: Radioimmunotherapy in advanced ovarian cancer: is there a role for pre-targeting with (90)Y-biotin? Gynecol. Oncol. (2004) 93(3):691-698.
  • KRAEBER-BODERE F, BARDET S, HOEFNAGEL CA et al.: Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a Phase I/II clinical trial. Clin. Cancer Res. (1999) 5(10 Suppl.):3190s-3198s.
  • VUILLEZ JP, KRAEBER-BODERE F, MORO D et al.: Radioimmunotherapy of small cell lung carcinoma with the two-step method using a bispecific anti-carcinoembryonic antigen/anti-diethylenetriaminepentaacetic acid (DTPA) antibody and iodine-131 Di-DTPA hapten: results of a Phase I/II trial. Clin. Cancer Res. (1999) 5(10 Suppl.):3259s-3267s.
  • KRAEBER-BODERE F, FAIVRE-CHAUVET A, FERRER L et al.: Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a Phase I radioimmunotherapy trial. Clin. Cancer Res. (2003) 9(10 Pt 2):3973S-3981S.
  • FORERO A, WEIDEN PL, VOSE JM et al.: Phase I trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood. (2004) 104(1):227-236.
  • CHINOL M, CASALINI P, MAGGIOLO M et al.: Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br. J. Cancer (1998) 78(2):189-197.
  • WITZIG TE, GORDON LI, CABANILLAS F et al.: Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J. Clin. Oncol. (2002) 20(10):2453-2463.
  • WILLIAMS LE, WU AM, YAZAKI PJ et al.: Numerical selection of optimal tumor imaging agents with application to engineered antibodies. Cancer Biother. Radiopharm. (2001) 16(1):25-35.

Website

  • http://www.fda.gov/cder/biologics/biologics_table.htm FDA therapeutic biological products approvals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.