314
Views
84
CrossRef citations to date
0
Altmetric
Review

Influence of protein transduction domains on intracellular delivery of macromolecules

&
Pages 739-746 | Published online: 31 Oct 2006

Bibliography

  • JOLIOT A, PROCHIANTZ A: Transduction peptides: from technology to physiology. Nat. Cell. Biol. (2004) 6(3):189-196.
  • TREHIN R, MERKLE HP: Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur. J. Pharm. Biopharm. (2004) 58(2):209-223.
  • FRANKEL AD, PABO CO: Cellular uptake of the TAT protein from human immunodeficiency virus. Cell (1988) 55(6):1189-1193.
  • GREEN M, LOEWENSTEIN PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus TAT trans-activator protein. Cell (1988) 55(6):1179-1188.
  • PEREZ F, JOLIOT A, BLOCH-GALLEGO E et al.: Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J. Cell Sci. (1992) 102(Pt 4):717-722.
  • THOREN PE, PERSSON D, KARLSSON M, NORDEN B: The antennapedia peptide penetratin translocates across lipid bilayers – the first direct observation. FEBS Lett. (2000) 482(3):265-268.
  • FUJIMOTO K, HOSOTANI R, MIYAMOTO Y et al.: Inhibition of pRb phosphorylation and cell cycle progression by an antennapedia-p16(INK4A) fusion peptide in pancreatic cancer cells. Cancer Lett. (2000) 159(2):151-158.
  • UEMURA S, ROTHBARD JB, MATSUSHITA H et al.: Short polymers of arginine rapidly translocate into vascular cells: effects on nitric oxide synthesis. Circ. J. (2002) 66(12):1155-1160.
  • WENDER PA, ROTHBARD JB, JESSOP TC, KREIDER EL, WYLIE BL: Oligocarbamate molecular transporters: design, synthesis, and biological evaluation of a new class of transporters for drug delivery. J. Am. Chem. Soc. (2002) 124(45):13382-13383.
  • ROTHBARD JB, KREIDER E, VANDEUSEN CL et al.: Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J. Med. Chem. (2002) 45(17):3612-3618.
  • FUTAKI S, SUZUKI T, OHASHI W et al.: Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. (2001) 276(8):5836-5840.
  • WENDER PA, MITCHELL DJ, PATTABIRAMAN K et al.: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. USA (2000) 97(24):13003-13008.
  • KATO D, MIYAZAWA K, RUAS M et al.: Features of replicative senescence induced by direct addition of antennapedia-p16INK4A fusion protein to human diploid fibroblasts. FEBS Lett. (1998) 427(2):203-208.
  • CHEN YN, SHARMA SK, RAMSEY TM et al.: Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl. Acad. Sci. USA (1999) 96(8):4325-4329.
  • SCHWARZE SR, HO A, VOCERO-AKBANI A, DOWDY SF: In vivo protein transduction: delivery of a biologically active protein into the mouse. Science (1999) 285(5433):1569-1572.
  • WADIA JS, STAN RV, DOWDY SF: Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. (2004) 10(3):310-315.
  • WADIA JS, DOWDY SF: Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev. (2005) 57(4):579-596.
  • WADIA JS, DOWDY SF: Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. (2003) 4(2):97-104.
  • LEWIN M, CARLESSO N, TUNG CH et al.: TAT peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. (2000) 18(4):410-414.
  • EGUCHI A, AKUTA T, OKUYAMA H et al.: Protein transduction domain of HIV-1 TAT protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. (2001) 276(28):26204-26210.
  • TORCHILIN VP, RAMMOHAN R, WEISSIG V, LEVCHENKO TS: TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA (2001) 98(15):8786-8791.
  • TORCHILIN VP, LEVCHENKO TS, RAMMOHAN R et al.: Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Natl. Acad. Sci. USA (2003) 100(4):1972-1977.
  • SOUROUJON MC, MOCHLY-ROSEN D: Peptide modulators of protein-protein interactions in intracellular signaling. Nat. Biotechnol. (1998) 16(10):919-924.
  • BRIGHT R, MOCHLY-ROSEN D: The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke (2005) 36(12):2781-2790.
  • MURRIEL CL, MOCHLY-ROSEN D: Opposing roles of delta and epsilon PKC in cardiac ischemia and reperfusion: targeting the apoptotic machinery. Arch. Biochem. Biophys. (2003) 420(2):246-254.
  • TYAGI M, RUSNATI M, PRESTA M, GIACCA M: Internalization of HIV-1 TAT requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. (2001) 276(5):3254-3261.
  • HAKANSSON S, JACOBS A, CAFFREY M: Heparin binding by the HIV-1 TAT protein transduction domain. Protein Sci. (2001) 10(10):2138-2139.
  • RUSNATI M, COLTRINI D, ORESTE P et al.: Interaction of HIV-1 TAT protein with heparin. Role of the backbone structure, sulfation, and size. J. Biol. Chem. (1997) 272(17):11313-11320.
  • RUSNATI M, TULIPANO G, URBINATI C et al.: The basic domain in HIV-1 TAT protein as a target for polysulfonated heparin-mimicking extracellular TAT antagonists. J. Biol. Chem. (1998) 273(26):16027-16037.
  • LUNDBERG M, JOHANSSON M: Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem. Biophys. Res. Commun. (2002) 291(2):367-371.
  • VIVES E, RICHARD JP, RISPAL C, LEBLEU B: TAT peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci. (2003) 4(2):125-132.
  • SWANSON JA, WATTS C: Macropinocytosis. Trends Cell Biol. (1995) 5(11):424-428.
  • SNYDER EL, DOWDY SF: Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. Expert Opin. Drug Deliv. (2005) 2(1):43-51.
  • KAPLAN IM, WADIA JS, DOWDY SF: Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release (2005) 102(1):247-253.
  • NAKASE I, NIWA M, TAKEUCHI T et al.: Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. (2004) 10(6):1011-1022.
  • MEIER O, BOUCKE K, HAMMER SV et al.: Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. (2002) 158(6):1119-1131.
  • NORBURY CC, HEWLETT LJ, PRESCOTT AR, SHASTRI N, WATTS C: Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity (1995) 3(6):783-791.
  • FUKI IV, MEYER ME, WILLIAMS KJ: Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem. J. (2000) 351(Pt 3):607-612.
  • HEWLETT LJ, PRESCOTT AR, WATTS C: The coated pit and macropinocytic pathways serve distinct endosome populations. J. Cell Biol. (1994) 124(5):689-703.
  • KOCH AM, REYNOLDS F, KIRCHER MF et al.: Uptake and metabolism of a dual fluorochrome TAT-nanoparticle in HeLa cells. Bioconjug. Chem. (2003) 14(6):1115-1121.
  • FISCHER R, KOHLER K, FOTIN-MLECZEK M, BROCK R: A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J. Biol. Chem. (2004) 279(13):12625-12635.
  • POTOCKY TB, MENON AK, GELLMAN SH: Cytoplasmic and nuclear delivery of a TAT-derived peptide and a β-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. (2003) 278(50):50188-50194.
  • MAGZOUB M, PRAMANIK A, GRASLUND A: Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry (2005) 44(45):14890-14897.
  • LEE CM, TANNOCK IF: Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br. J. Cancer (2006) 94(6):863-869.
  • SHIRAISHI T, NIELSEN PE: Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett. (2006) 580(5):1451-1456.
  • LINDSAY MA: Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. (2002) 2(5):587-594.
  • BEGLEY R, LIRON T, BARYZA J, MOCHLY-ROSEN D: Biodistribution of intracellularly acting peptides conjugated reversibly to TAT. Biochem. Biophys. Res. Commun. (2004) 318(4):949-954.
  • INAGAKI K, CHEN L, IKENO F et al.: Inhibition of delta-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation (2003) 108(19):2304-2307.
  • MENDOZA N, FONG S, MARSTERS J et al.: Selective cyclin-dependent kinase 2/cyclin A antagonists that differ from ATP site inhibitors block tumor growth. Cancer Res. (2003) 63(5):1020-1024.
  • HARBOUR JW, WORLEY L, MA D, COHEN M: Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch. Ophthalmol. (2002) 120(10):1341-1346.
  • MAI JC, MI Z, KIM SH, NG B, ROBBINS PD: A proapoptotic peptide for the treatment of solid tumors. Cancer Res. (2001) 61(21):7709-7712.
  • DATTA K, NAMBUDRIPAD R, PAL S et al.: Inhibition of insulin-like growth factor-I-mediated cell signaling by the von Hippel-Lindau gene product in renal cancer. J. Biol. Chem. (2000) 275(27):20700-20706.
  • DATTA K, SUNDBERG C, KARUMANCHI SA, MUKHOPADHYAY D: The 104-123 amino acid sequence of the β-domain of von Hippel-Lindau gene product is sufficient to inhibit renal tumor growth and invasion. Cancer Res. (2001) 61(5):1768-1775.
  • HOSOTANI R, MIYAMOTO Y, FUJIMOTO K et al.: Trojan p16 peptide suppresses pancreatic cancer growth and prolongs survival in mice. Clin. Cancer Res. (2002) 8(4):1271-1276.
  • SHERR CJ, MCCORMICK F: The RB and p53 pathways in cancer. Cancer Cell (2002) 2(2):103-112.
  • HUPP TR, SPARKS A, LANE DP: Small peptides activate the latent sequence-specific DNA binding function of p53. Cell (1995) 83(2):237-245.
  • SELIVANOVA G, IOTSOVA V, OKAN I et al.: Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med. (1997) 3(6):632-638.
  • SNYDER EL, MEADE BR, SAENZ CC, DOWDY SF: Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol. (2004) 2(2):E36.
  • HARADA H, HIRAOKA M, KIZAKA-KONDOH S: Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res. (2002) 62(7):2013-2018.
  • BASHOUR AM, MENG JJ, IP W, MACCOLLIN M, RATNER N: The neurofibromatosis Type 2 gene product, merlin, reverses the F-actin cytoskeletal defects in primary human Schwannoma cells. Mol. Cell Biol. (2002) 22(4):1150-1157.
  • STEIN S, WEISS A, ADERMANN K et al.: A disulfide conjugate between anti-tetanus antibodies and HIV (37-72)TAT neutralizes tetanus toxin inside chromaffin cells. FEBS Lett. (1999) 458(3):383-386.
  • WAGSTAFF KM, JANS DA: Protein transduction: cell penetrating peptides and their therapeutic applications. Curr. Med. Chem. (2006) 13(12):1371-1387.
  • CONNER SD, SCHMID SL: Regulated portals of entry into the cell. Nature (2003) 422(6927):37-44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.