1,177
Views
124
CrossRef citations to date
0
Altmetric
Review

From nose to brain: understanding transport capacity and transport rate of drugs

, &
Pages 1159-1168 | Published online: 25 Sep 2008

Bibliography

  • Tallkvist J, Persson E, Henriksson J, Tjalve H. Cadmium-metallothionein interactions in the olfactory pathways of rats and pikes. Toxicol Sci 2002;67:108-13
  • Perrsson E, Henriksson J, Tjalve H. Uptake of cobalt from the nasal mucosa into the brain via olfactory pathways in rats. Toxicol Lett 2003;145:19-27
  • Henriksson J, Tjalve H. Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicol Sci 2000;55:392-8
  • Van Den Pol AN, Dalton KP, Rose JK. Relative neurotropism of a recombinant rhabdovirus expressing a green fluorescent envelope glycoprotein. J Virol 2002;76:1309-27
  • Jerusalmi A, Morris-Downes MM, Sheahan BJ, Atkins GJ. Effect of intranasal administration of semliki forest virus recombinant particles expressing reporter and cytokine genes on the progression of experimental autoimmune encephalomyelitis. Mol Ther 2003;8:886-94
  • Born J, Lange T, Kern W, et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 2002;5:514-6
  • Draqhia R, Caillaud C, Manicom R, et al. Gene delivery into the central nervous system by nasal instillation in rats. Gene Ther 1995;2:418-23
  • Han IK, Kim MY, Byun HM, et al. Enhanced brain targeting efficiency of intranasally administered plasmid DNA: an alternative route for brain gene therapy. J Mol Med 2007;85:75-83
  • Rappoport A, Winner P. Nasal delivery of antimigraine drugs: clinical rationale and evidence base. Headache 2006;46:S192-201
  • Goadsby PJ, Yates R. Zolmitriptan intranasal: a review of the pharmacokinetics and clinical efficacy. Headache 2006;46:138-49
  • Benedict C, Hallschmid M, Schmitz K, et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 2007;32:239-43
  • Benedict C, Hallschmid M, Hatke A, et al. Intranasal insulin improves memory in humans. Psychoneuroimmunology 2004;29:1326-34
  • Dickerson TJ, Janda KD. Recent advances for the treatment of cocaine abuse: central nervous system immunopharmacotherapy. AAPS J 2005;7:E579-86
  • Reger MA, Watson GS, Green PS, et al. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 2008;70:440-8
  • Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J Alzheimers Dis 2008;13:323-31
  • Chinese Pharmacopoeia. 2005 edition, First part, Chemical Industry Press; 2005. p. 587
  • Merkus P, Guchelaar HJ, Bosch A, et al. Direct access of drugs to the human brain after intranasal drug administration. Neurology 2003;60:1669-71
  • Dufes C, Olivier JC, Gaillard F, et al. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm 2003;255:87-97
  • Li R, Wu W, Chen HG, et al. Theory and practice of intranasal administration in the treatment of cerebrovascular disease. Chin J Clin Rehabil 2005;9:182-3
  • Frey WH II. Method for administering neurologic agents to the brain. US5624898; 1997
  • Frey WH II. Neurologic agents for nasal administration to the brain. WO007947; 1991
  • Thorne RG, Hanson LR, Ross TM, et al. Delivery of interferon-beta to the monkey nervous system following internasal administration. Neuroscience 2008;152:785-97
  • Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 2004;56:3-17
  • Monteiro-riviere NA, Popp JA. Ultrastructural characterization of the nasal respiratory epithelium in the rat. Am J Anat 1984;169:31-43
  • Barnett EM, Perlman S. The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology 1993;194:185-91
  • Yamada K, Hasegawa M, Kametani S, Ito S. Nose-to-brain delivery of TS-002, prostaglandin D2 analogue. J Drug Target 2007;15:59-66
  • Westin UE, Boström E, Gråsjö, et al. Direct nose-to-brain transfer of morphine after nasal administration to rats. Pharm Res 2006;23:565-72
  • Thorne RG, Frey WH II. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2001;40:907-46
  • Reger MA, Watson GS, Frey WH II, et al. Effect of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 2006;27:451-8
  • Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004;127:481-96
  • Schaefer ML, Böttger B, Silver WL, Finger TE. Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 2002;444:221-6
  • Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today 2002;7:967-75
  • Von Hoegen P. Synthetic biomimetic supra molecular Biovector (SMBV) particles for nasal vaccine delivery. Adv Drug Deliv Rev 2001;51:113-25
  • Merkus F, Ven Den Berg MP. Can nasal drug delivery bypass the blood–brain barrier?: questioning the direct transport theory. Drugs R&D 2007;8:133-44
  • Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 2000;11:1-18
  • Schmuker M, Bruyne MD, Hähnel M, Schneider G. Predicting olfactory receptor neuron responses from odorant structure. Chem Cent J 2007;1:11
  • Donovan MD, Huang Y. Large molecule and particulate uptake in the nasal cavity: the effect of size on nasal absorption. Adv Drug Deliv Rev 1998;29:147-55
  • Sakane T, Akizuki M, Yamashita S, et al. Direct drug transport from the nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of the drug. J Pharm Pharmacol 1995;47:379-81
  • Fehm HL, Perras B, Smolink R, et al. Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology. Eur J Pharmacol 2000;405:43-54
  • Kern W, Schiefer B, Schwarzenburg J, et al. Evidence for central nervous effects of corticotrophin-releasing hormone on gastric acid secretion in humans. Neuroendocrinology 1997;65:291-8
  • Liu XF, Fawcett JR, Thorne RG, et al. Intranasal administration of insulin-like growth factor-1 bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 2001;187:91-7
  • Lemiale F, Kong WP, Akyürek LM, et al. Enhanced mucosal immunoglobulin a response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol 2003;77:10078-87
  • Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res 1986;63:461-73
  • Broadwell RD, Balin BJ. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol 1985;242:632-50
  • Sakane T, Akizuki M, Yamashita S, et al. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem Pharm Bull 1991;39:2456-85
  • Jiang XG, Lu X, Cui JB, et al. Studies on octanol-water partition coefficient and nasal drug absorption. Acta Pharm Sin 1997;32:458-60
  • Sakane T, Akizuki M, Yamashita S, et al. Direct drug transport from the nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol 1994;46:378-9
  • Ross TM, Martinez PM, Renner JC, et al. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 2004;151:66-77
  • Charlton ST, Davis SS, Illum L. Evaluation of bioadhesive polymers as delivery system for nose to brain delivery: in vitro characterization studies. J Control Release 2007;118:225-34
  • Illum L. Nasal drug delivery compositions containing nicotine. US5935604; 1999
  • Pavis H, Wicock A, Edgecombe J, et al. Pilot study of nasal morphine-chitosan for the relief of breakthrough pain in patients with cancer. J Pain Symptom Manage 2002;24:598-602
  • Illum L, Watts P, Fisher AN, et al. Intranasal delivery of morphine. J Pharmacol Exp Ther 2002;301:391-400
  • Khanvilkar K, Donvan MD, Flnagan DR. Drug transfer through mucus. Adv Drug Deliv Rev 2001;48:173-93
  • Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004;16:437-45
  • Betbeder D, Sperandio S, Latapie JP, et al. Biovector™ nanoparticles improve antinociceptive efficacy of nasal morphine. Pharm Res 2000;17:743-8
  • Vyas TK, Babbar AK, Sharma RK, et al. Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech 2006;7(8). Available from: www.aapspharmscitech.org
  • Kumar M, Misra A, Babbar AK, et al. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008;358:285-91
  • Candace L, Pollack GM. P-glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res 2003;20:1225-30
  • Vyas TK, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting. Curr Drug Deliv 2005;2:165-75
  • Van Den Berg MP, Romeijin SG, Verhoef JC, et al. Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. J Neurosci Methods 2002;116:99-107
  • Charlton ST, Davis SS, Illum L. Nasal administration of an angiotensin antagonist in the rat model: effect of bioadhesive formulations on the distribution of drugs to the systemic and central nervous systems. Int J Pharm 2007;338:94-103
  • Dhanda DS, Frey WH II, Leopold D, Kompella UB. Approaches for drug deposition in the human olfactory epithelium. Drug Deliv Tech 2005;5. Available from: www.drugdeliverytech.com
  • Hanson LR, Martinez PM, Mignot E, Frey WH II. Intranasal administration of hypocretin 1 (Orexin A) bypasses the blood–brain barrier & targets the brain: a new strategy for the treatment of narcolepsy. Drug Deliv Tech 2004;4:66-71
  • Mayor SH, Illum L. Investigation of the effect of anaesthesia on nasal absorption of insulin in rats. Int J Pharm 1997;149:123-9
  • Toyama H, Ichise M, Liow JS, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31:251-6
  • Gwak HS, Cho YM, Chun IK. Analgesic effects of intra-nasal enkephalins. J Pharm Pharmacol 2003;55:1207-12
  • Gao XL, Tao WX, Jiang XG, et al. Lectin-conjugated PEG-PLA nanoparticles: Preparation and brain delivery after intranasal administration. Biomaterials 2006;27:3482-90
  • Gao XL, Wu BX, Jiang XG, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release 2007;121:156-67
  • Gao XL, Chen J, Jiang XG, et al. UEA I-bearing nanoparticles for brain delivery following intranasal administration. Int J Pharm 2007;340:207-15
  • Janda KJ. Delivery of active proteins to the central nervous system using phage vectors. WO2007001302; 2007
  • Lerner, Eduard N. Administering pharmaceuticals to the mammalian central nervous system. US6410046; 2002
  • Jogani V, Jinturkar K, Vyas T, Misra A. Recent patents review on intranasal administration for CNS drug delivery. Recent Patents Drug Deliv Formulation 2008;2:25-40
  • Pezron I, Mitra AK, Duvvuri S, Tirucherai GS. Prodrug strategies in nasal drug delivery. Expert Opin Ther Patents 2002;12:331-40
  • Kao HD, Traboulsi A, Itoh S, et al. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res 2000;17:978-84
  • Dalpiaz A, Gavini E, Colombo G, et al. Brain uptake of an anti-ischemic agent by nasal administration of microparticles. J Pharm Sci 2008; published online in Wiley Interscience, doi: 10.1002/jps.21335. Available from: www.interscience.wiley.com
  • Charlton S, Jones NS, Davis SS, Illum L. Distribution and clearance of bioadhesive formulations from the olfactory region in man: effect of polymer type and nasal delivery device. Eur J Pharm Sci 2007;30:295-302
  • Xie Y, Cui W, Wu K, et al. The distribution of NGF liposomes in the rats via nasal administration. J Chin Clin Med 2004;5:1-4
  • Melgarejo MP, Hellin MD, Melgarejo MC. Olfactory epithelium of the rat: lectin-mediated histochemical studies. An Otorrinolaringol Ibero Am 1998;25:471-80
  • Lundh B, Brockstedt U, Kristensson K. Lectin-binding pattern of neuroepithelial and respiratory epithelial cells in the mouse nasal cavity. Histochem J 1989;21:33-43
  • Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin–cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 2004;56:459-80
  • Lavelle EC, Grant G, Pusztai A, et al. Mucosal immunogenicity of plant lectins in mice. Immunology 2000;99:30-7
  • Hussain AA, Dittert LW, Traboulsi A. Brain delivery of folic acid for the prevention of Alzheimer's disease and stroke. US6369058; 2002
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996;380:364-6
  • Pasqualini R, Koivunen E, Ruoslahti E. αV integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997;15:542-6
  • Kolonin MG, Sun J, Do KA, et al. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J 2006;20:979-81
  • Higgins LM, Lambkin I, Donnelly G, et al. In vivo phage display to identify M cell-targeting ligands. Pharm Res 2004;21:695-705
  • Ladner RC, Sato AK, Gorzelany J, De Souza M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today 2004;9:525-9
  • Zou J, Dickerson MT, Deutscher SL. Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep 2004;31:121-9
  • Chen YP, Shen YY, Wen LP, et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol 2006;24:455-60
  • Frenkel D, Solomon B. Filamentous phage as vector-mediated antibody delivery to the brain. Proc Natl Acad Sci USA 2002;99:5675-9
  • Liu XF, Fawcett JR, Frey WH II. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-1 in rats. J Stroke Cerebrovasc Dis 2004;13:16-23
  • Yu YP, Xu QQ, Zhang Q, et al. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett 2005;387:5-10
  • Wang F, Jiang XG, Lu W, et al. Intranasal delivery of methotrexate to the brain in rats bypassing the blood– brain barrier. Drug Deliv Technol 2004;4:34-40
  • Capsoni S, Giannotta S, Cattaneo A. Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc Natl Acad Sci USA 2002;99:12432-7
  • De Rosa R, Garcia AA, Braschi C, et al. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA 2005;102:3811-6
  • Evans JG, Wilcock G, Birks J. Evidence-based pharmacotherapy of Alzheimer's disease. Int J NeuropsychoPharmacol 2004;7:351-69
  • Budka H. Human immunodeficiency virus (HIV)-induced disease of the central nervous system: pathology and implications for pathogenesis. Acta Neuropathol 1989;77:225-36
  • Al-ghananeem AM, Traboulsi AA, Dittert LW, Hussain AA. Targeted brain delivery of 17β-estradiol via nasally administered water soluble prodrugs. AAPS PharmSciTech 2002;3:40-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.