107
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Utilization of solid nanomaterials for drug delivery

, &
Pages 725-735 | Published online: 01 Jul 2008

Bibliography

  • Arzt E, Gumbsch P. 5.5 Small-Scale materials and structures. M Rühle, H Dosch, EJ Mittemeijer, MH Van de Voorde, editors, European white book on fundamental research in materials science. Max-Planck-Institut für Metallforschung; 2001
  • Kwon N, Beaux M, McIlroy D, et al. Nanowire-based delivery of Escherichia coli O157 shiga toxin 1 A Subunit into human and bovine cells. Nanoletters 2007;7:2718-23
  • Tkachenko AG, Xie H, Coleman D, et al. Multifunction gold nanoparticle–peptide complexes for nuclear targeting. J Am Chem Soc 2003;125:4700-1
  • Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 2003;125:7860-5
  • Narbe C, Bartlett J, Kong L, et al. Silica particles, a novel drug-delivery system. Adv Mater 2004;16:1959-66
  • Li Z, Wen L, Shao L, J Chen. Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release 2004;98:245-54
  • Haruta M. Size- and support-dependency in the catalysis of gold. Catal Today 1997;36:153-66
  • McIlroy DN, Alkhateeb A, Aston D, et al. Nanospring formation – unexpected catalyst mediated growth. J Phys Condens Matter 2004;16:R415-40, 2004
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2007;2:577-83
  • Chang J, Chang B, Hwang D, et al. In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 2007;41:2064-8
  • Weng KC, Noble CO, Papahadjopoulos-Sternberg B, et al. Optimizing quantum-dot conjugated immunoliposomes for cancer diagnostics and targeted therapeutics. Nanotechnology 2007;2:776-9
  • Limbch LK, Li Y, Grass RN, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 2005;39:9370-6
  • Murdock RC, Braydich-Stolle L, Schrand AM, et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2008;101:239-53
  • Farah AA, Alverez-Puebla RA, Fenniri H. Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 2007;319:572-6
  • Sauter C, Emin MA, Schuchmann HP, Tavman S. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem 2008;15:517-23
  • Cheng X, Kuhn L. Chemotherapy drug delivery from calcium phosphate nanoparticles. Int J Nanomed 2007;2:667-74
  • Adili A, Crowe S, Beaux M, et al. Differential cytotoxicity exhibited by silica nanowires and nanoparticles. Nanotoxicology 2008;2:1-8
  • Bottini M, D'Annibale F, Magrini A, et al. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomed 2007;2:227-33
  • Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett 2007;7:2835-42
  • Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 2007;129:8845-49
  • Chen M, von Mikecz A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 2005;305:51-62
  • Bhatia SK, Shriver-Lake LC, Prior KC, et al. Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal Biochem 1989;178:408-13
  • Lindoy, Leonard F. AU. Eaglen, Peter AU. Ion complexation by silica-immobilized polyethyleneimines. US5190660; 1993
  • Venkatesan N, Yoshimitsu J, Ito Y, et al. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 2005;26:7154-63
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49:N309-315
  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006;312:1027-30
  • Chien SF, Chen SH, Lin CT. Galactosidase gene expression in yeast cells enhanced by nanoparticles. Nanotechnology 2007;2:382-5
  • Han G, Ghosh P. Rotello VM. Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 2007;620:48-56
  • Dobson J. Magnetic mico- and nano-particle-based targeting for drug and gene delivery. Nanomedicine 2006;1:31-7
  • Leuschner C, Kumar C, Hansel W, et al. Hormone peptide conjugated ironoxide nanoparticles for detection and treatment of metastases. Nanotechnology 2007;2:429-30
  • Ankareddi I, Hampel ML, Sewell MK, Kim D-H. Development of a magnetically triggered drug delivery system using thermoresponsive grafted polymer networks with magnetic nanoparticles. Nanotechnology 2007;2:431-4
  • Lin CY, Ho K-C. Synthesis of superparamagnetic magnetite nanoparticles for thermoresponsive drug delivery. Nanotechnology 2007;2:405-8
  • Lin CY, Ho K-C. Hyperthermia effect of surface-modified magnetite nanoparticles in a microfluid system. Nanotechnology 2007;2:425-8
  • Hu SH, Liu TY, Liu D-M, Chen S-Y. Nano-ferrosponges for controlled drug release. J Control Release 2007;121:181-9
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275:177-82
  • DV Parikh, T Fink, K Rajasekharan, et al. Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Textile Res J 2005;75:134-8
  • Pakinar, Kishore Madhukar (Pune, IN) Anti-microbial activity of biologically stabilized silver nano particles. US20070218555; 2007
  • Porter AE, Muller K, Skepper J, et al. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studies by high resolution electron microscopy and electron tomography. Acta Biomater 2006;2:409-19
  • Cui D, Tian F, Coyer SR, et al. Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J Nanosci Nanotechnol 2007;7:1639-46
  • Kateb B, Van Handel M, Zhang L, et al. Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 2007;37(Suppl 1):S9-17
  • Cai D, Mataraza JM, Qin ZH, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2005;2:449-54
  • Zhang M, Yudasaka M, Iijima S. Dissociation of electrolytes in a nano-aqueous system within single-wall carbon nanotubes. J Phys Chem B 2005;109:6037-9
  • Venkatesan N, Yoshimitsu J, Ito Y, et al. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 2005;26:7154-63
  • Striolo A. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett 2006;6:633-9
  • Magres A, Kasas S, Salicio V, et al. Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett 2006;6:1121-5
  • Lam C-W, James JT, McCluskey R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006;36:189-217
  • Manna SK, Sarkar S, Barr J, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 2005;5:1676-84
  • Schipper M, Nakayama-Ratchford N, Gambhir S, et al. A pilot toxicology study of single-walledcarbon nanotubes in a small sampleof mice. Nat Nanotech 2008;3:216
  • Dumortier H, Lacotte S, Astorin G, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006;6:1522-8
  • Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induced oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004;112:1058-62
  • Dobrokhotov V, McIlroy D, Berven C, et al. Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles. J Appl Phys 2006;99:10
  • Sharma HS, Ali SF, Dong W, et al. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann NY Acad Sci 2007;1122:197-218
  • Beaux M, Kwon N, McIlroy D, et al. Fibronectin bonding to nanowires and their internalization by epithelial cells. J Biomed Nanotechnol 2006;2:1-6
  • Nano sunblock safety under scrutiny. Anna Salleh, 2004. Available from: http://www.abc.net.au/science/news/stories/s1165709.htm [Last accessed 14 April 2008]
  • Study shows nanoparticles in sun cream may affect mice brain cells. Simon Pitman, 2004. Available from: http://www.cosmeticsdesign.com/news/ng.asp?n=68585-study-shows-nanoparticles [Last accessed 14 April 2008]
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823-39
  • Thrall L. Study links TiO2 nanoparticles with potential for brain-cell damage. Environ Sci Technol 2006;40:4326-7
  • A review of the scientific literature on the safety of nanoparticulate titanium dioxide or zinc oxide in sunscreens. Australian Government Dept. of TGA, 2006. Available from: http://www.tga.gov.au/npmeds/sunscreen-zotd.pdf [Last accessed 14 April 2008]
  • Cross SE, Innes B, Roberts MS, et al. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 2007;20:148-54
  • Do nanoparticles and sunscreen mix? David Biello, 2007. Available from: http://www.sciam.com/article.cfm?articleID=84355695-E7F2-99DF-32AE048E858F385C [Last accessed 14 April 2008]
  • Nanotechnology – in my toothpaste …? Michael Berger, 2006. Available from: http://www.nanowerk.com/spotlight/spotid=1091.php [Last accessed 14 April 2008]
  • Nanoparticle penetration of human skin – a double-edged sword. Michael Berger, 2007. Available from: http://www.nanowerk.com/spotlight/spotid=1820.php [Last accessed 14 April 2008]
  • Nanomaterials, sunscreens and cosmetics: small ingredients big risks. Friends of the Earth, 2006. Available from: http://nano.foe.org.au/filestore2/download/125/FoEA%20nano%20cosmetics%20report%20web.pdf [Last accessed 10 October 2007]
  • Nanoparticles and the skin – a health risk for the consumer? Gerhard J. Nohynek, 2006. Available from: http://www.bfr.bund.de/cm/232/nanoparticles_and_the_scin.pdf [Last accessed 10 October 2007]
  • Shvedova A, Castranova V, Kisin E, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 2003;66:1909-26
  • Available from: http://www.nano-lab.com/nanotube-image3.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.