377
Views
36
CrossRef citations to date
0
Altmetric
Review

The use of machine learning and nonlinear statistical tools for ADME prediction

, PhD
Pages 149-169 | Published online: 24 Feb 2009

Bibliography

  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3:711-5
  • Hansch C, Mekapati SB, Kurup A, et al. QSAR of cytochrome P450. Drug Metab Rev 2004;36:105-56
  • de Graaf C, Vermeulen NP, Feenstra KA. Cytochrome p450 in silico: an integrative modeling approach. J Med Chem 2005;48:2725-55
  • de Groot MJ, Ekins S. Pharmacophore modeling of cytochromes P450. Adv Drug Deliv Rev 2002;54:367-83
  • Kurogi Y, Guner OF. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 2001;8:1035-55
  • Ghose AK, Herbertz T, Pippin DA, et al. Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J Med Chem 2008;51:5149-71
  • Ekins S, Andreyev S, Ryabov A, et al. Computational prediction of human drug metabolism. Expert Opin Drug Metab Toxicol 2005;1:303-24
  • Barrett SJ, Langdom WB. Advances in the application of machine learning techniques in drug discovery, design and development. WSC10: 10th Online World Conference on Soft Computing in Industrial Applications 2005
  • Fox T, Kriegl JM. Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem 2006;6:1579-91
  • Li H, Yap CW, Ung CY, et al. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci 2007;96:2838-60
  • Ma XH, Wang R, Xue Y, et al. Advances in machine learning prediction of toxicological properties and adverse drug reactions of pharmaceutical agents. Curr Drug Saf 2008;3:100-14
  • Winkler DA. Neural networks in ADME and toxicity prediction. Drugs Future 2004;29:1043-57
  • Yap CW, Li H, Ji ZL, et al. Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties. Mini Rev Med Chem 2007;7:1097-107
  • Yap CW, Xue Y, Li ZR, et al. Application of support vector machines to in silico prediction of cytochrome p450 enzyme substrates and inhibitors. Curr Top Med Chem 2006;6:1593-607
  • Jordan MI. Learning in graphical models. MIT Press, 1999
  • Whittaker J. Graphical models in applied multivariate statistics. Wiley, 1990
  • Muller KR, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 2001;12:181-201
  • Polikar R. Ensemble Based Systems in Decision Making. IEEE Circuits Syst Mag 2006;6:21-45
  • Bishop CM. Pattern Recognition and Machine Learning. Springer-Verlag New York, LLC, 2006
  • Gamerman D. Markov Chain Monte Carlo: stochastic simulation for Bayesian inference. Chapman and Hall, CRC, 1997
  • Hestenes MR. Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stds 1952;49:409-36
  • Nocedal J, Wright SJ. Numerical optimization. Springer-Verlag, 1999
  • Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Rumelhart DE, editor, Parallel distributed processing: foundations. MIT Press, 1986. p. 1
  • Bellman R. Adaptive control process: a guided tour. Princeton University Press, 1961
  • Bishop CM. Neural networks for pattern recognition. Oxford University Press, 1995
  • Gupta N. Feature Selection. QSARWorld, A strand life sciences web resource. Available from: http://wwwqsarworldcom/qsar-ml-feature-selectionphp2008
  • Atkson CG, Moore AW, Schaal S. Locally weighted learning. Artif Intell Rev 1997;11:11-73
  • Neumann MH. Multivariate wavelet thresholding in anisotropic function spaces. Statistical Sinica 2000;10:399-431
  • Tong W, Hong H, Xie Q, et al. Assessing QSAR limitations–A regulatory perspective. Curr Comp-Aided Drug Design 2005;1:195-205
  • Topliss JG, Edwards RP. Chance factors in studies of quantitative structure-activity relationships. J Med Chem 1979;22(10):1238-44
  • Kononenko I, Kukar M. Machine learning and data mining: introduction to principles and algorithms. Horwood, 2007
  • Mitchell T. Machine learning. McGraw Hill, 1997
  • Mitra S, Datta S, Perkins T, et al. Introduction to machine learning and bioinformatics. CRC Press, 2008
  • Hebb DO. The organization of behavior. Wiley, New York, 1949
  • Rosenblatt F. Principles of neurodynamics. Spartan Books, Washington, DC, 1962
  • Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Natl Acad Sci 1982;79:2554-8
  • Broomhead DS, Lowe D. Multivariate functional interpolation and adaptive networks. Complex Systems 1988;2:321-55
  • Kohonen T. Self-organization and associative memory. Berlin: Springer-Verlag, 1984
  • Good IJ. The estimation of probabilities–An essay on modern Bayesian methods. The MIT Press, Cambridge, 1964
  • Nilsson N. Learning machines. McGraw-Hill, 1965
  • Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;IT-13:21-7
  • Hunt E, Martin J, Stone P. Experiments in induction. Academic Press, New York, 1966
  • Quinlain JR. Discovering rules from large collections of examples. In: Michie D, editor, Expert systems in the microelectronic age. Edinburgh University Press, 1979
  • Breiman L, Jh F, Ra O, Cj S. Classification and regression trees. Wadsforth International Group, 1984
  • Holland JH. Adaptation in natural and artificial system. University of Michigan Press, Ann Arbor, 1975
  • Akaike H. A new look at the Bayes procedure. Biometrika 1978;65:53-9
  • Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461-4
  • MacKay DJC. The evidence framework applied to classification problems. Neural Comput 1992;4:720-36
  • Neal RM. Bayesian learning for neural networks. Springer Pub, 1996
  • Bayes T. An essay towards solving a problem in the doctrine of chances. Physiol Trans R Soc Lond 1763;53:370-418
  • Mackay DJC. Bayesian non-linear modelling for teh 1993 energy prediction competition. In: Heidbreder G, editor, Maximum entropy and Bayesian methods, Santa Barbara 1993, Dordrecht: Kluwer 1995. p. 211-54
  • Mosteller F. A k-sample slippage test for an extreme population. Ann Math Stat 1948;19:58-65
  • Stone M. Cross-validatory choice and assessment of statistical predictions. J Royal Stat Soc 1974;36:111-47
  • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 1983;78:316-30
  • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc Fourteenth Int Joint Conf Artif Intell 1995;2:1137-43
  • Golbraikh A, Tropsha A. Beware of q2!. J Mol Graph Model 2002;20:269-76
  • Hawkins DM, Basak SC, Mills D. Assessing model fit by cross-validation. J Chem Inf Comput Sci 2003;43:579-86
  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 2003;22:69-77
  • Statnikov A, Aliferis CF, Tsamardinos I, et al. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005;21:631-43
  • Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 2006;7:91
  • Team RDC. R. A language and environment for statistical computing. R foundation for statistical computing: Vienna, Australia. Available from: http://www.R-project.org.2005
  • Available from: http://cran.r-project.org/web/views/
  • Available from: http://www.world-academy-of-science.org/worldcomp08/ws/conferences/mlmta08. International conference on machine learning; models, technologies and applications MLMTA-2008: Las Vegas, NV, USA.
  • Sakiyama Y, Yuki H, Honma T. Prediction of human liver microsomal stability with machine learning. In: Arabnia R et al., editors, Proceedings of the 2008 international conference on machine learning; models, technologies and applications. CSREA. Press 2008;2:784-6
  • Brown MP, Grundy WN, Lin D, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 2000;97:262-7
  • Furey TS, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000;16:906-14
  • Toronen P, Kolehmainen M, Wong G, et al. Analysis of gene expression data using self-organizing maps. FEBS Lett 1999;451:142-6
  • Pedersen AG, Nielsen H. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proceedings/international conference on intelligent systems for molecular biology; ISMB international conference on intelligent systems for Molecular Biology 1997;5:226-33
  • Zien A, Ratsch G, Mika S, et al. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 2000;16:799-807
  • Jin B, Zhang YQ, Wang B. Granular kernel trees with parallel genetic algorithms for drug activity comparisons. Int J Data Min Bioinform 2007;1:270-85
  • Liu Q, Zhang Y, Xu Y, et al. Fuzzy kernel clustering of RNA secondary structure ensemble using a novel similarity metric. J Biomol Struct Dyn 2008;25:685-96
  • Amadou Boubacar H, Lecoeuche S, Maouche S. SAKM: self-adaptive kernel machine. A kernel-based algorithm for online clustering. Neural Networks 2008;21:1287-301
  • Yoo PD, Ho YS, Zhou BB, et al. SiteSeek: post-translational modification analysis using adaptive locality-effective kernel methods and new profiles. BMC Bioinformatics 2008;9:272
  • Li GZ, Meng HH, Lu WC, et al. Asymmetric bagging and feature selection for activities prediction of drug molecules. BMC Bioinformatics 2008;9(Suppl 6):S7
  • Skinner BT, Nguyen HT, Liu DK. Classification of EEG signals using a genetic-based machine learning classifier. Conf Proc IEEE Eng Med Biol Soc 2007;3120-23
  • Liu KH, Huang DS. Cancer classification using Rotation Forest. Comput Biol Med 2008;38:601-10
  • Rodriguez JJ, Kuncheva LI, Alonso CJ. Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Analy Mach Intell 2006;28:1619-30
  • Huuskonen J, Salo M, Taskinen J. Neural network modeling for estimation of the aqueous solubility of structurally related drugs. J Pharm Sci 1997;86:450-4
  • Devillers J, Domine D, Guillon C, et al. Simulating lipophilicity of organic molecules with a back-propagation neural network. J Pharm Sci 1998;87:1086-90
  • Bruneau P. Search for predictive generic model of aqueous solubility using Bayesian neural nets. J Chem Inf Comput Sci 2001;41:1605-16
  • Burden FR, Ford MG, Whitley DC, et al. Use of automatic relevance determination in QSAR studies using Bayesian neural networks. J Chem Inf Comput Sci 2000;40:1423-30
  • Burbidge R, Trotter M, Buxton B, et al. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 2001;26:5-14
  • Trotter MWB, Holden SB. Support vector machines for ADME property classification. QSAR Comb Sci 2003;22:533-48
  • Susnow RG, Dixon SL. Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. J Chem Inf Comput Sci 2003;43:1308-15
  • Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 2003;43:1947-58
  • Burden FR. Quantitative structure-activity relationship studies using Gaussian processes. J Chem Inf Comput Sci 2001;41:830-5
  • Schroeter TS, Schwaighofer A, Mika S, et al. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules. J Comput Aided Mol Des 2007;21:651-64
  • Schwaighofer A, Schroeter T, Mika S, et al. Accurate solubility prediction with error bars for electrolytes: a machine learning approach. J Chem Inf Model 2007;47:407-24
  • Schroeter T, Schwaighofer A, Mika S, et al. Machine learning models for lipophilicity and their domain of applicability. Mol Pharm 2007;4:524-38
  • Obrezanova O, Csanyi G, Gola JM, et al. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 2007;47:1847-57
  • Obrezanova O, Gola JM, Champness EJ, et al. Automatic QSAR modeling of ADME properties: blood-brain barrier penetration and aqueous solubility. J Comput Aided Mol Des 2008;22:431-40
  • Schwaighofer A, Schroeter T, Mika S, et al. A probabilistic approach to classifying metabolic stability. J Chem Inf Model 2008;48:785-96
  • Zhang S, Golbraikh A, Oloff S, et al. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 2006;46:1984-95
  • Jensen BF, Vind C, Padkjaer SB, et al. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 2007;50:501-11
  • Klon AE, Lowrie JF, Diller DJ. Improved Naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction. J Chem Inf Model 2006;46:1945-56
  • Narayanan R, Gunturi SB. In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method. Bioorg Med Chem 2005;13:3017-28
  • Hou T, Wang J, Zhang W, et al. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model 2007;47:208-18
  • Embrechts MJ, Ekins S. Classification of Metabolites with Kernel Partial Least Squares (K-Pls). Drug Metab Dispos 2007;35:325-27
  • Friedman J. Multivariate Adaptive Regression splines; Laboratory for computational statistics. Stanford, CA, 1988
  • Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure–activity–relationships and quantitative structure–property relationships. J Chem Inf Comput Sci 1994;34:854-66
  • Polley MJ, Burden FR, Winkler DA. Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks. Aust J Chem 2005;58:859-63
  • Wang YH, Li Y, Li YH, et al. Modeling K(m) values using electrotopological state: substrates for cytochrome P450 3A4-mediated metabolism. Bioorg Med Chem Lett 2005;15:4076-84
  • Wang YH, Li Y, Yang SL, et al. An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian-regularized neural network. J Comput Aided Mol Des 2005;19:137-47
  • Arimoto R, Prasad MA, Gifford EM. Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors. J Biomol Screen 2005;10:197-205
  • de Cerqueira Lima P, Golbraikh A, Oloff S, et al. Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 2006;46:1245-54
  • Frohlich H, Wegner JK, Sieker F, et al. Kernel functions for attributed molecular graphs–A new similarity-based approach to ADME prediction in classification and regression. QSAR Comb Sci 2006;25:317-26
  • Hou T, Wang J, Li Y. ADME evaluation in drug discovery 8: the prediction of human intestinal absorption by a support vector machine. J Chem Inf Model 2007;47:2408-15
  • Kriegl JM, Arnhold T, Beck B, et al. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 2005;19:189-201
  • Li H, Yap CW, Ung CY, et al. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J Chem Inf Model 2005;45:1376-84
  • Liu HX, Yao XJ, Zhang RS, et al. Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-square support vactor machines. J Comput Aided Mol Des 2005;19:499-508
  • Ma W, Luan F, Zhang H, et al. Quantitative structure-property relationships for pesticides in biopartitioning micellar chromatography. J Chromatogr 2006;1113:140-7
  • Palmer DS, O'Boyle NM, Glen RC, et al. Random forest models to predict aqueous solubility. J Chem Inf Model 2007;47:150-8
  • Sakiyama Y, Yuki H, Moriya T, et al. Predicting human liver microsomal stability with machine learning techniques. J Mol Graph Model 2008;26:907-15
  • Sorich MJ, Smith PA, Miners JO, et al. Recent advances in the in silico modelling of UDP glucuronosyltransferase substrates. Curr Drug Metab 2008;9:60-9
  • Svetnik V, Wang T, Tong C, et al. Boosting: an ensemble learning tool for compound classification and QSAR modeling. J Chem Inf Model 2005;45:786-99
  • Votano JR, Parham M, Hall LM, et al. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. J Med Chem 2006;49:7169-81
  • Yap CW, Chen YZ. Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. J Chem Inf Model 2005;45:982-92
  • Zhang L, Zhu H, Oprea TI, et al. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm Res 2008;25:1902-14
  • Zhao C, Zhang H, Zhang X, et al. Prediction of milk/plasma drug concentration (M/P) ratio using support vector machine (SVM) method. Pharm Res 2006;23:41-8
  • Burton J, Ijjaali I, Barberan O, et al. Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: importance of the quality of the dataset. J Med Chem 2006;49:6231-40
  • Chohan KK, Paine SW, Mistry J, et al. A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. J Med Chem 2005;48:5154-61
  • Deconinck E, Hancock T, Coomans D, et al. Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. J Pharmacol Biomed Anal 2005;39:91-103
  • Gleeson MP, Waters NJ, Paine SW, et al. In silico human and rat Vss quantitative structure-activity relationship models. J Med Chem 2006;49:1953-63
  • Lamanna C, Bellini M, Padova A, et al. Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process. J Med Chem 2008;51:2891-7
  • Mente SR, Lombardo F. A recursive-partitioning model for blood-brain barrier permeation. J Comput Aided Mol Des 2005;19:465-81
  • Yamashita F, Hara H, Ito T, et al. Novel hierarchical classification and visualization method for multiobjective optimization of drug properties: application to structure-activity relationship analysis of cytochrome P450 metabolism. J Chem Inf Model 2008;48:364-9
  • Yamashita F, Itoh T, Hara H, et al. Visualization of large-scale aqueous solubility data using a novel hierarchical data visualization technique. J Chem Inf Model 2006;46:1054-9
  • Deconinck E, Xu QS, Put R, et al. Prediction of gastro-intestinal absorption using multivariate adaptive regression splines. J Pharmacol Biomed Anal 2005;39:1021-30
  • Jung E, Kim J, Kim M, et al. Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 2007;8:245
  • Narasimhan B, Ansari AM, Singh N, et al. A QSAR approach for the prediction of stability of benzoglycolamide ester prodrugs. Chem Pharm Bull (Tokyo) 2006;54:1067-71
  • Ekins S, Balakin KV, Savchuk N, et al. Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping techniques. J Med Chem 2006;49:5059-71
  • Kaiser D, Terfloth L, Kopp S, et al. Self-organizing maps for identification of new inhibitors of P-glycoprotein. J Med Chem 2007;50:1698-702
  • Wang YH, Li Y, Yang SL, et al. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Model 2005;45:750-7
  • O'Brien SE, de Groot MJ. Greater than the sum of its parts: combining models for useful ADMET prediction. J Med Chem 2005;48:1287-91
  • Keefer CE, Woody NA. Rejecting unclassifiable samples with decision forests. Chemometrics Intell Lab Syst 2006;84:40-5
  • Lee PH, Cucurull-Sanchez L, Lu J, et al. Development of in silico models for human liver microsomal stability. J Comput Aided Mol Des 2007;21:665-73
  • Lombardo F, Obach RS, Dicapua FM, et al. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J Med Chem 2006;49:2262-7
  • Available from: http://www.cs.waikato.ac.nz/∼ml/weka/. Weka 3–Data mining with open source machine learning software in Java.
  • Available from: http://www.ailab.si/orange/
  • Available from: http://www.kernel-machines.org/software
  • Available from: http://kdnuggets.com/software/
  • Breiman L. Random forests. Mach Learn 2001;45:5-32
  • Breiman L. Bagging predictors. Mach Learn 1996;24:123-40
  • Vapnik V. The nature of statistical learning theory. New York: Springer. 1995
  • Cristianini N, Shawe-Taylor J. An introduction to support vector machines. Cambridge University Press, New York, 2000
  • Minka TP. Expectation propagation for approximate Bayesian inference, Morgan Kaufmann. In: Breese JS, Koller D, editors, Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence. 2001. p. 362-9
  • Williams CKI, Barber D. Bayesian classification with Gaussian processes. IEEE Trans Pattern Analy Mach Intell 1998;20:1342-51
  • Neal RM. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Technical report 9702, Department of statistics, University of Toronto. Available from: http://wwwcstorontoedu/∼radford 1997;45:5-32
  • Rasmussen CE, Williams CKI. Gaussian processes for machine learning. The MIT Press, 2006
  • Stokes M, Davis C, Koch G. Observer agreement. Second edition. In: Stokes ME, Davis CS, Koch GG, editors, Categorical data analysis using the SAS system cary, NC: SAS institute. 1995. p. 98-102
  • Baldi P, Brunak S, Chauvin Y, et al. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000;16:412-24
  • Green D, Swets J. Signal detection theory and psychophysics. New York: John Wiley and Sons; 1966. p. 45-9
  • Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 2004;44:1000-5
  • Karthikeyan M, Glen RC, Bender A. General melting point prediction based on a diverse compound data set and artificial neural networks. J Chem Inf Model 2005;45:581-90
  • Available from: http://cheminformatics.org/datasets/
  • Dogra SK. Choice Between Models. QSARWorld, A strand life sciences web resource 2008. Available from: http://www.qsarworld.com/qsar-ml-choice-between-models.php
  • Caruana R, Karampatzakis N, Yessenalina A. An empirical evaluation of supervised learning in high dimensions. Proceedings of the 25th international conference on machine learning, Helsinki, Finland, 2008
  • Netzeva TI, Worth A, Aldenberg T, et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim 2005;33:155-73
  • Wu CFJ, Hamada M. Experiments: planning, analysis and parameter design optimization. Wiley, New York, 2000
  • Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Technical report, department of computer science and information engineering, National Taiwan University. Available from: http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf,.2004
  • Box GBP, Hunter JS, Hunter WG. Fractional factorial design. Second edition. Statistics for experimenters, design, innovation, and discovery, Willey-Interscience, 2005
  • Kuentz M, Rothlisberger D, Richter W. Design of experiment (DOE) methods maximize information from a minimal number of animals in special cases of preclinical bioavailability testing. Pharm Dev Technol 2003;8:453-8
  • Yin Y, Carter CW Jr. Incomplete factorial and response surface methods in experimental design: yield optimization of tRNA(Trp) from in vitro T7 RNA polymerase transcription. Nucleic Acids Res 1996;24:1279-86
  • Available from: http://ieeexplore.ieee.org/Xplore/guesthome.jsp
  • Available from: http://www.mloss.org/
  • Sonnenburg S, Braun ML, Ong CS, et al. The need for open source software in machine learning. J Mach Learn:2443-66
  • Available from: http://archive.ics.uci.edu/ml/
  • Available from: http://www.conflate.net/icml/
  • Available from: http://www.nips.cc
  • Available from: http://www.qsarworld.com/qsar-datasets.php
  • Available from: http://pubchem.ncbi.nlm.nih.gov/
  • Available from: http://www.bindingdb.org
  • Available from: http://www.ncbi.nlm.nih.gov/sites/entrez
  • Lim TS, Loh WY, Shih YS. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning 2000;40:203-28
  • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel methods–support vector learning, MIT Press, 1999. p .185-208
  • Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. Neural networks for signal processing VII–Proceedings of the 1997 IEEE Workshop IEEE, 1997. p. 276-85
  • Available from: http://accelrys.com/
  • Cartmell J, Enoch S, Krstajic D, et al. Automated QSPR through Competitive Workflow. J Comput Aided Mol Des 2005;19:821-33
  • Balakin KV, Ivanenkov YA, Savchuk NP, et al. Comprehensive computational assessment of ADME properties using mapping techniques. Curr Drug Discov Technol 2005;2:99-113
  • Sato T, Matsuo Y, Honma T, et al. In silico functional profiling of small molecules and its applications. J Med Chem 2008;51:7705-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.