68
Views
34
CrossRef citations to date
0
Altmetric
Review

The influence of long-term treatment with psychotropic drugs on cytochrome P450: the involvement of different mechanisms

Pages 203-217 | Published online: 16 Aug 2005

Bibliography

  • BRØSEN K, ZEUGIN T, MEYER UA: Role of P4502D6, the targed of the sparteine-debrisoquine oxidation polymorphism, in the metabolism of imipramine. Clin. Pharmacol. Ther. (1991) 49:609–617.
  • NILSEN KK, BRØSEN K, HANSEN MB, GRAM LF: Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin. Pharmacol. Ther. (1994) 55:518–527.
  • SPINA E, STEINER E, ERICSSON Ö, SJOQVIST F: Hydroxylation of desmethylimipramine: dependence on debrisoquin hydroxylation phenotype. Clin. Pharmacol. (1987) 41:314–319.
  • STEINER E, DUMONT E, SPINA E, DAHLQVIST R: Inhibition of desipramine 2-hydroxylation by quinidine and quinine. Clin. Pharmacol. Ther. (1988) 43:577–581.
  • BREYER-PFAFF U, PFANDL B, NILL K et al.: Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin. Pharmacol. Ther. (1992) 52:350–358.
  • GHAHRAMANI P, ELLIS SW, LENNARD MS, RAMSAY LE, TUCKER GT: Cytochrome P450 mediating the N-demethylation of amitriptyline. Br. J. Clin. Pharmacol. (1997) 43:137–144.
  • LEMOINE A, GAUTIER JC, AZOULAY D et al.: Major pathway of imipramine metabolism is characterized by cytochromes P450 1A2 and P450 3A4 in human liver. Mol. Pharmacol. (1993) 43:827–832.
  • COUTTS RT, BACH MV, BAKER GB: Metabolism of amitriptyline with CYP2D6 expressed in a human cell line. Xenobiotica (1997) 27:33–47.
  • COUTTS RT, BAKER GB, DANESHTALAB M: Analysis of imipramine and three metabolites produced by isozyme CYP2D6 expressed in a human cell line. Xenobiotica (1993) 23:1289–1298.
  • MASUBUCHI Y, IWASA T, FUJITA S, SUZUKI T, HORIE T, NARIMATSU S: Regioselectivity and substrate concentration-dependency of involvement of the CYP2D subfamily in oxidative metabolism of amitriptyline and nortriptyline in rat liver microsomes. J. Pharm. Pharmacol. (1996) 48:925–929.
  • KOBAYASHI K, ISHIZUKA T, SHIMADA N, YOSHIMURA Y, KAMIJMA K, CHIBA K: Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P450 in vitro. Drug Metab. Dispos. (1999) 27:763–766.
  • MARGOLIS JM, O’DONNELL JP, MANKOWSKI DC, EKINS S, OBACH RS: (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab. Dispos. (2000) 28:1187–1191.
  • RING BJ, ECKSTEIN JA, GILLESPIE JS, BINKLEY SN, VANDENBRANDEN M, WRIGHTON SA: Identification of the human cytochromes P450 responsible for in vitro formation of R- and Snorfluoxetine. J. Pharmacol. Exp. Ther. (2001) 297:1044–1050.
  • STÖRMER E, VON MOLTKE LL, SCHADER RI, GREENBLATT DJ: Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P450 1A2, 2D6, and 3A4. Drug Metab. Dispos. (2000) 28:1168–1175.
  • OTTON SV, BALL SE, CHEUNG SW, INABA T, RUDOLPH RL, SELLERS EM: Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br. J. Clin. Pharmacol. (1996) 41:149–156.
  • BARBHAIYA RH, BUCH AB, GREENE DS: Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. Br. J. Pharmacol. (1996) 42:573–581.
  • SYVÄLAHTI EKG, LINDBERG R, KALLIO J, DE VOCHT M: Inhibitory effects of neuroleptics on debrisoquine oxidation in man. Br. J. Pharmacol. (1986) 22:89–92.
  • DAHL-PUUSTINEN ML, LIDEN A, ALM C, NORDIN C, BERTILSSON L: Disposition of perphenazine is related to the polymorphic hydroxylation in human beings. Clin. Pharmacol. Ther. (1989) 46:78–81.
  • MEYER JW, WOGGON B, BAUMANN P, MEYER UA: Clinical implications of slow sulphoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur. J. Clin. Pharmacol. (1990) 39:613–614.
  • DAHL ML AND BERTILSSON L: Genetically variable metabolism of antidepressant and neuroleptic drugs. Pharmacogenetics (1993) 3:61–70.
  • LLERENA A, BERECZ R, DE LA RUBIA A, NORBERTO MJ, BENITEZ J: Use of the mesoridazine/ thioridazine ratio as a marker for CYP2D6 enzyme activity. Ther. Drug Monit. (2000) 22:397–401.
  • JERLING M, DAHL M-L, ABERG-WISTED A, LILJENBERG B, LANDELL N-E, BERTILSSON L: The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin. Pharmacol. Ther. (1996) 59:423–428.
  • LLERENA A, HERRAIZ EG, COBALEDA J, JOHANSSON I, DAHL M-L: Debrisoquine and mephenytoin hydroxylation phenotypes and CYP2D6 genotype in patients treated with neuroleptic and antidepressant agents. Clin. Pharmacol. Ther. (1996) 54:606–611.
  • BRÖCKMÖLLER J, KIRCHHEINER J, SCHMIEDER J et al.: The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin. Pharamacol. Ther. (2002) 72:438–452.
  • MURALIDHARAN G, COOPER JK, HAWES EM, KORCHINSKI ED, MIDHA KK: Quinidine inhibits the 7-hydroxylation of chlorpromazine in extensive metabolizers of debrisoquine. Eur. J. Clin. Pharmacol. (1996) 50:121–128.
  • YOSHII K, KOBAYASHI K, TSUMUJI M, TANI M, SHIMADA N, CHIBA K: Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life. Sci. (2000) 67:175–184.
  • BLAKE BL, ROSE RL, MAILMAN RB, LEVI PE, HODGSON E: Metabolism of thioridazine by microsomal monooxygenases: relative roles of P450 and flavin-containing monooxygenase. Xenobiotica (1995) 25:377–393.
  • DANIEL WA, SYREK M, HADUCH A: The contribution of cytochrome P450 isoenzymes to the metabolism of phenothiazine neuroleptics. Eur. Neuropsychopharmacol. (2002) 12:371–377.
  • VANDEL P, HAFFEN E, VANDEL S et al.: Drug extrapyramidal side effects. CYP2D6 genotypes and phenotypes. Eur. J. Clin. Pharmacol. (1999) 55:659–665.
  • ELLINGROD VL, SCHULTZ SK, ARNDT S: Association between cytochrome P4502D6 (CYP2D6) genotype, antipsychotic exposure, and abnormal involuntary movement scale (aims) score. Psychiatr. Genet. (2000) 10:9–11.
  • SCORDO MG, SPINA E, ROMEO P et al.: CYP2D6 genotype and antipsychoticinduced extrapyramidal side effects in schizophrenic patients. Eur. J. Clin. Pharmacol. (2000) 56:679–683.
  • SCORDO MG AND SPINA E: Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics (2002) 3:201–218.
  • REGGIANI K, VANDEL P, HAFFEN E, SECHTER D, BIZUARD P, VANDEL S: Extrapyramidal side effects of neuroleptic and antidepressant treatment: assessment of potential risk factors through CYP2D6 genetic polymorphism. Encephale (2000) 26:62–67.
  • HUANG ML, VAN PEER A, WOESTENBORGHS R et al.: Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin. Pharmacol. Ther. (1993) 54:257–268.
  • WONG SL, MENACHERRY S, MULFORD D, SCHMITZ PJ, LOCKE C, GRANNEMAN GR: Pharmacokinetics of sertindole and dehydrosertindole in volunteers with normal or impaired renal function. Eur. J. Clin. Pharmacol. (1997) 52:223–227.
  • BURNS MJ: The pharmacology and toxicology of atypical antipsychotic agents. Clin. Toxicol. (2001) 39:1–14.
  • WÓJCIKOWSKI J, PICHARDGARCIA L, MAUREL P, DANIEL WA: Contribution of human cytochrome P450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Brit. J. Pharmacol. (2003) 138:1465–1474.
  • WÓJCIKOWSKI J, PICHARDGARCIA L, MAUREL P, DANIEL WA: The metabolism of the piperazine-type phenothiazine neuroleptic perazine by the human cytochrome P450 isoenzymes. Eur. Neuropsychopharmacol. (2004) 14:199–208.
  • ZANGER UM, RAIMUNDO S, EICHELBAUM M: Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn-Schmiedeberg’s Arch. Pharmacol. (2004) 369:23–37.
  • SCHULZ-UTERMOEHL T, BENNETT AJ, ELLIS SW, TUCKER GT, BOOBIS AR, EDWARDS RJ: Polymorphic debrisoquine 4-hydroxylase activity in the rat is due to differences in CYP2D2 expression. Pharmacogenetics (1999) 9:357–366.
  • CREWE HK, LENNARD MS, TUCKER GT, WOODS FR, HADDOCK RE: The effect of selective reuptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br. J. Clin. Pharmacol. (1992) 34:262–265.
  • JEPPESEN U, GRAM LF, VISTISEN K, LOFT S, POULSEN HE, BRØSEN K: Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur. J. Clin. Pharmacol. (1996) 51:73–78.
  • SCHMIDER J, GREENBLATT DJ, VON MOLTKE LL, HARMATZ JS, SHADER RI: Inhibition of cytochrome P450 by nefazodone in vitro: studies of dextromethorphan O- and Ndemethylation. Br. J. Clin. Pharmacol. (1996) 41:339–343.
  • HOLM KJ, MARKHAM A: Mirtazapine. A review of its use in major depression. Drugs (1999) 57:607–631.
  • VON MOLTKE LL, GREENBLAT DJ, GRANDA BW et al.: Nefazodone, metachlorophenylpiperazine, and their metabolites in vitro: cytochromes mediating transformation, and P450–3A4 inhibitory actions. Psychopharmacology (1999) 145:113–122.
  • BRØSEN K, SKJELBO E, RASMUSSEN BB, POULSEN HE, LOFT S: Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem. Pharmacol. (1993) 45:1211–1214. First evidence for the CYP1A2 inhibition by fluvoxamine.
  • VON MOLTKE LL, GREENBLATT DJ, COURT MH, DUAN SX, HARMATZ JS, SHADER RJ: Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J. Clin. Psychopharmacol. (1995) 5:125–131.
  • VON MOLTKE LL, GREENBLATT DJ, SCHMIDER J et al.: Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J. Clin. Pharmacol. (1995) 36:783–791.
  • KOBAYASHI K, YAMAMOTO T, CHIBA K, TANI M, ISHIZAKI T, KUROIWA Y: The effect of selective serotonin reuptake inhibitors and their metabolites on S-mephenytoin 4’-hydroxylase activity in human liver microsomes. Br. J. Clin. Pharmacol. (1995) 40(Suppl. 5):481–485.
  • SHIN JC, SOUKHOVA N, FLOCKHART DA: Effect of antipsychotic drugs on human liver cytochrome P450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab. Dispos. (1999) 27:1078–1084
  • SHIN JG, KANE K, FLOCKHART DA: Potent inhibition of CYP2D6 by haloperidol metabolites: stereoselective inhibition by reduced haloperidol. Br. J. Clin. Pharmacol. (2001) 51:45–52
  • DANIEL WA, HADUCH A, WOJCIKOWSKI J: Inhibition and possible induction of rat CYP2D after short- and long-term treatment with antidepressants. J. Pharm. Pharmacol. (2002) 54:1545–1552
  • BALL SE, AHERN D, SCATINA J, KAO J: Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Br. J. Clin. Pharmacol. (1997) 43:619–626.
  • DANIEL WA, HADUCH A, WOJCIKOWSKI J: Inhibition of rat liver CYP2D in vitro and after 1-day and longterm exposure to neuroleptics in vivo. possible involvement of different mechanisms. Eur. Neuropsychopharmacol. (2005) 15:103–110.
  • KOBAYASHI S, MURRAY S, WATSON D, SESARDIC D, DAVIES DS, BOOBIS AR: The specificity of inhibition of debrisoquine 4-hydroxylase activity by quinidine and quinine in the rat is the inverse of that in man. Biochem. Pharmacol. (1989) 38:2795–2799.
  • HADUCH A, WOJCIKOWSKI J, DANIEL WA: The effect of tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs) and newer antidepressant drugs on the activity and level of rat CYP3A. Eur. Neuropsychopharmacol. (in press)
  • SKJELBO A. AND BROSEN K: Inhibitors of imipramine metabolism by human liver microsomes. Br. J. Clin. Pharmacol. (1992) 34:256–261.
  • SHIN JG, PARK JY, KIM MJ et al. : Inhibitory effects of tricyclic antidepressants (TCAs) on human cytochrome P450 enzymes in vitro: mechanism of drug interaction between TCAs and phenytoin. Drug Metab. Dispos. (2002) 30:1102–1107
  • RING BJ, BINKLEY SN, ROSKOS N, WRIGHTON SA: Effects of fluoxetine, sertraline and desmethylsertraline on human CYP3A catalyzed 1’-hydroxy midazolam formation in vitro. J. Pharmacol. Exp. Ther. (1995) 275:1131–1135.
  • DAHL ML, VOORTMAN G, ALM C et al.: In vitro and in vivo studies on the disposition of mirtazapine in humans. Clin. Drug Investig. (1997) 13:37–46.
  • HADUCH A, DANIEL WA: The complex effects of neuroleptics on the level and activity of CYP2C6, CYP2C11 and CYP3A1/2 in the rat liver. The 15th International Symposium on Microsomes and Drug Oxidations: Chemical Biology in the Postgenomic Era. New Approaches and Applications. Mainz, Germany (2004):151–152.
  • ZHAO XJ AND ISHIZAKI T: The in vitro hepatic metabolism of quinidine in mice, rats and dogs: comparison with human liver microsomes. J. Pharmacol. Exp. Ther. (1997) 283:1168–1176.
  • WANG RW, NEWTON DJ, LIU N, ATKINS WM, LU AY: Human cytochrome P450 3A4: in vitro drug.drug interaction patterns are substrate-dependent. Drug Metab. Dispos. (2000) 28:360–366.
  • SCHRAG M L AND WIENKERS LC: Covalent alteration of the CYP3A4 active site: evidence for multiple substrate binding domains. Arch. Biochem. Biophys. (2001) 391:49–55.
  • HEMERYCK A, DE VRIENDT C, BELPAIRE FM: Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)- warfarin using human liver microsomes. Eur. J. Clin. Pharmacol. (1999) 54:947–951
  • NELSON M H, BIRNBAUM AK, REMMEL RP: Inhibition of phenytoin hydroxylation in human liver microsomes by several selective serotonin re-uptake inhibitors. Epilepsy Res. (2001) 44:71–82.
  • DANIEL WA, KOT M, WOJCIKOWSKI J: Effects of classic and newer antidepressants on the oxidation pathways of caffeine in rat liver. in vitro study. Pol. J. Pharmacol. (2003) 55:1045–1053.
  • DANIEL WA, KOT M, WOJCIKOWSKI J: Effects of classic and atypical neuroleptics on caffeine oxidation in rat liver microsomes. Pol. J. Pharmacol. (2003) 55:1055–1061.
  • WOJCIKOWSKI J, PICHARDGARCIA L, MAUREL P, DANIEL WA: Perazine as a potent inhibitor of human CYP1A2, but not CYP3A4. Pol. J. Pharmacol. (2002) 54:407–410.
  • SESARDIC D, BOOBIS A, MURRAY BP et al.: Furafylline is a potent and selective inhibitor of cytochrome P4501A2 in man. Br. J. Clin. Pharmacol. (1990) 29:651–663.
  • BENSOUSSAN C, DELAFORGE M, MANSUY D: Particular ability of cytochromes P450 3A to form inhibitory P450-iron-metabolite complexes upon metabolic oxidation of amino drugs. Biochem. Pharmacol. (2001) 49:591–602.
  • MURRAY M, FIELD SL: Inhibition and metabolite complexation of rat hepatic microsomal cytochrome P450 by tricyclic antidepressants. Biochem. Pharmacol. (1992) 43:2065–2071.
  • MCNEIL CM, MURRAY M: Inhibition of microsomal cytochromes P450 in rat liver by the tricycle antidepressant drug desipramine and its primary oxidized metabolites. Biochem. Pharmacol. (1996) 51:15–20.
  • MURRAY M, MURRAY K: Mechanismbased inhibition of CYP activities in rat liver by fluoxetine and structurally similar alkylamines. Xenobiotica (2003) 33:973–987.
  • KAPPUS H, REMMER H: Irreversible protein binding of [14C] imipramine with rat and human liver microsomes. Biochem. Pharmacol. (1975) 24:1079–1084.
  • MASUBUCHI Y, TAKAHASHII CH, FUJIO N et al.: Inhibition and induction of cytochrome P450 isoenzymes after repetitive administration of imipramine in rats. Drug Metab. Dispos. (1995) 23:999–1003.
  • FORREST IS, GREEN DE: Phenothiazines: metabolism and analytical detection. J. Forens. Sci. (1972) 17:592–617.
  • DE MOL NJ, BUSKER RW: Irreversible binding of the chlorpromazine radical cation and of photoactivated chlorpromazine to biological macromolecules. Chem. Biol. Interact. (1984) 52:79–92.
  • DE MOL NJ, BECHT ABC, KOENEN J, LODDER G: Irreversible binding with biological macromolecules and effect of bacterial mutagenity tests on the radical cation of promethazine and photoactivated promethazine. Comparison with chlorpromazine. Chem. Biol. Interact. (1986) 57:73–83.
  • KELDER PP, FISCHER MJE, DE MOL NJ, JANSSEN LHM: Oxidation of chlorpromazine by methemoglobin in the presence of hydrogen peroxide. formation of chlorpromazine radical cation and its covalent binding to methemoglobin. Arch. Biochem. Biophys. (1991) 284:313–319.
  • GUTIERREZ-CORREA J, FAIRLAMB AH, STOPPANI AO: Trypanosoma cruzi trypanothione reductase is inactivated by peroxidase-generated phenothiazine cationic radicals. Free Radic. Res. (2001) 34:363–378.
  • GUTIERREZ-CORREA J, STOPPANI AO: Mycloperoxidasegenerated phenothiazine cation radicals inactivate Trypanosoma cruzi dihydrolipoamide dehydrogenase. Rev. Argent. Microbiol. (2002) 34:83–94.
  • FANG J, GORROD JW: Metabolism, pharmacogenetics, and metabolic drug- drug interactions of antipsychotic drugs. Cell. Mol. Neurobiol. (1999) 19:491–510.
  • FANG J, MCKAY G, SONG J, REMILLRD A, XINMIN LI, MIDHA K: In vitro characterization of the metabolism of haloperidol using recombinant cytochrome P450 enzymes and human liver microsomes. Drug Metab. Dispos. (2001) 12:1638–1643.
  • WÓJCIKOWSKI J: Potential role of the brain dopaminergic system in the regulation of cytochrome P450 expression. Pol. J. Pharmacol. (2004) 56:701–708.
  • WAXMAN DJ, RAM PA, PAMPORI NA, SHAPIRO BH: Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate. Mol. Pharmacol. (1995) 48:790–797.
  • ANDERSON M, BANDIERA SM, CHANG TKH, BELLWARD GD: Effect of androgen administration during puberty on hepatic CYP2C11, CYP3A, and CYP2A1 expression in adult female rats. Drug Metab. Dispos. (1998) 26:1031–1038.
  • LIDDLE C, GOODWIN BJ, GEORGE J, TAPNER M. person-group-type="author">FARRELI GC: Separate and interactive regulation of cytochrome P450 by triiodothyronine, dexamethasone, and growth hormone in cultured hepatocytes. J. Clin. Endocrinol. Metab. (1998) 83:2411–2416.
  • PASCUSSI JM, GERBAL-CHALOIN S, PICHARD-GARCIA L et al.: Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem. Biophys. Res. Commun. (2000) 274:707–713.
  • SUNMAN JA, HAWKE RL, LECLUYSE EL, KASHUBA AD: Kupffer cell-mediated IL-2 suppression of CYP3A activity in human hepatocytes. Drug Metab. Dispos. (2004) 32:359–363.
  • MELLON SH, GRIFFIN LD, COMPAGNONE NA: Biosynthesis and action of neurosteroids. Brain Res. Rev. (2001) 37:3–12.
  • HIROI T, KISHIMOTO W, CHOW T, IMAOKA S, IGARASHI T, FUNAE Y: Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology (2001) 142:3901–3908.
  • KISHIMOTO W, HIROI T, SHIRAISHI M et al.: Cytochrome P450 2D catalyze steroid 21-hydroxylation in the brain. Endocrinology (2003) 145:699–705.
  • HONKAKOSKI, NEGISHI M: Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem. J. (2000) 347:321–337.
  • HONKAKOSKI P, JAASKELAINEN I, KORTELAHTI M, URTTI A: A novel drug-regulated gene expression system based on the nuclear receptor constitutive androstane receptor (CAR). Pharmacol. Res. (2001) 18:146–150.
  • QUATROCHI LC, GUZELIAN PS: CYP3A regulation: from pharmacology to nuclear receptors. Drug Metab. Dispos. (2001) 29:615–622.
  • GIBSON GG, PLANT NJ, SWALES KE, AYRTON A, EL-SANKARY W: Receptordependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica (2002) 32:165–206.
  • BURK O, WOJNOWSKI L: Cytochrome P450 3A and their regulation. Naunyn-Schmieeberg’s. Arch. Pharmacol. (2004) 369:105–124.
  • BREYER U: Accumulation and elimination of a novel metabolite during chronic administration of the phenothiazine drug perazine to rats. Biochem. Pharmacol. (1972) 21:1419–1429.
  • DANIEL WA, MELZACKA M: The effect of antidepressants on ethylmorphine and imipramine N-demethylation in rat liver microsomes. J. Pharm. Pharmacol. (1986) 38:396–398.
  • DANIEL W, FRIEBERTSHÄUSER J, STEFFEN C: The effects of imipramine and desipramine on mixed function oxidase in rats. Naunyn Schmiedeberg’s Arch. Pharmacol. (1984) 328:83–86.
  • DANIEL W, NETTER KJ: Alteration of cytochrome P450 by prolonged administration of imipramine and/or lithium to rats. Naunyn Schmiedeberg’s Arch. Pharmacol. (1990) 342:234–240.
  • DANIEL WA, SYREK M, HADUCH A, WÓJCIKOWSKI J: The influence of selective serotonin reuptake inhibitors (SSRIs) on the pharmacokinetics of thioridazine and its metabolites: in vivo and in vitro studies. Exp. Toxic. Pathol. (1999) 51:309–314.
  • DANIEL WA, SYREK M, HADUCH A, WÓJCIKOWSKI J: The effect of selective serotonin reuptake inhibitors (SSRIs) on the pharmacokinetics and metabolism of perazine in the rat. J. Pharm. Pharmacol. (2001) 53:449–461.
  • MURRAY M: Inhibition and induction of cytochrome P450 2B1 in rat liver by promazine and chlorpromazine. Biochem. Pharmacol. (1992) 44:1219–1222.
  • RANE A, LIU Z, LEVOL R et al.: Differential effects of neuroleptic agents on hepatic cytochrome P450 isoenzymes in the male rat. Biochim. Biophys. Acta (1996) 1291:60–66.
  • TATEISHI T, KUMAI T, WATANABE M, TANAKA M, KOBAYASHI S: A comparison of the effect of five phenothiazines on hepatic CYP isoenzymes in rats. Pharmacol. Toxicol. (1999) 85:252–256.
  • DANIEL WA: The influence of longtermed treatment with psychotropic drugs on CYP isoenzymes - preclinical studies. Central/East European CINP Regional Meeting, Brno, Czech Republic, 2004. Psychiatrie (2004) 8(Suppl. 4):18–19.
  • DANIEL WA: Mechanisms of cellular distribution of psychotropic drugs. Significance for drug action and interactions. Prog. Neuropsychopharmacol. Biol. Psychiatry (2003) 27:65–73.
  • HASSAN PC, SPROULE BA, NARANJO CA, HERMANN N: Doseresponse evaluation of the interaction between sertraline and alprazolam in vivo. J. Clin. Psychopharmacol. (2000) 20:150–158.
  • WARRINGTON SJ: Clinical implications of the pharmacology of serotonin reuptake inhibitors. Int. Clin. Psychopharmacol. (1992) 7:13–19.
  • KOLAKOWSKA T, FRANKLIN M, ALAPIN B: Effects of long-term phenotiazine treatment on drug metabolism. Br. J. Clin. Pharmacol. (1975) 2:25–28.
  • O’MALLEY K, BRAUNUNG M, STEVENSON I, TURNBULL MJ: Stimulation of drug metabolism in man by tryciclic antidepressants. Eur. J. Clin. Pharmacol. (1973) 6:102–106.
  • CRESTEIL T, CELIER C, KREMERS P, FLINOIS JP, BEAUNE PH, LEROUX JP: Induction of drug metabolizing enzymes by tricyclic antidepressants in human liver: characterization and partial resolution of cytochrome P450. Br. J. Clin. Pharmacol. (1983) 1:651–657.
  • HIROI T, IMAOKA S, FUNAE Y: Dopamine formation from tyramine by CYP2D6. Biochem. Biophys. Res. Commun. (1998) 249:838–843.
  • THOMPSON CM, CAPDEVILA JH, STROBEL HW: Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid. J. Pharmacol. Exp. Ther. (2000) 294:1120–1130.
  • YU A-M, IDLE JR, BYRD LG, KRAUSZ KW, KÜPFER A, GONZALES FJ: Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics (2003) 13:173–181.
  • HIROI T, CHOW T., IMAOKA S, FUNAE Y: Catalytic specificity of CYP2D isoforms in rat and human. Drug Metab. Dispos. (2002) 30:970–976.
  • MIKSYS SL, TYNDALE RF: Drugmetabolizing cytochrome P450s in the brain. J. Psychiatry Neurosci. (2002) 27:406–415.
  • THOMPSON CM, KAWASHIMA H, STROBEL HW: Isolation of partially purified P450 2D18 and charakterization of activity toward the tricyclic antidepressants imipramine and desipramine. Arch. Biochem. Biophys. (1998) 359:115–121.
  • TYNDALE RF, LI Y, LI N-Y, MESSINA E, MIKSYS S, SELLERS EM: Characterization of cytochrome P450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab. Dispos. (1999) 27:924–930.
  • STROBEL HW, CATTANEO E, ADESNIK M, MAGGI A: Brain cytochromes P450 are responsive to phenobarbital and tricyclic amines. Pharmacol. Res. (1989) 21:169–175.
  • HEDLUND E, WYSS A, KAINU T et al.: Cytochrome P4502D4 in the brain: specific neuronal regulation by clozapine and toluene. Mol. Pharmacol. (1996) 50:342–350.
  • HADUCH A, WÓJCIKOWSKI J, DANIEL WA: Effects of chronic treatment with classic and newer antidepressants and neuroleptics on the activity and level of CYP2D in the rat brain. A. Pol. J. Pharmacol. (2004) 56:857–862.
  • GRAM LF, OVERØ KF, KIRK L: Influence of neuroleptics and benzodiazepines on metabolism of tricyclic antidepressants in man. Am. J. Psychiat. (1974) 131:863–866.
  • VANDEL B, VANDEL S, ALLERS G, BECHTEL P, VOLMAT R: Interaction between amitriptyline and phenothiazine in man: effect on plasma concentration of amitriptyline and its metabolite nortriptyline and the correlation with clinical response. Psychopharmacology (1979) 65:187–190.
  • NELSON JC, JATLOW PI: Neuroleptic effect on desipramine steady-state plasma concentration. Am. J. Psychiat. (1980) 137:1232–1234.
  • BRØSEN K, GRAM LF, KLYSNER R, BECH P: Steady-state levels of imipramine and its metabolites: significance of dosedependent kinetics. Eur. J. Clin. Pharmacol. (1986) 30:43–49.
  • GRAM LF, CHRISTIANSEN J, OVERØ KF: Pharmacokinetic interaction between neuroleptics and tricyclic antidepressants in the rat. Acta Pharmacol. Toxicol. (1974) 35:223–232.
  • DANIEL W, MELZACKA M: The effect of neuroleptics on imipramine demethylation in rat liver microsomes and imipramine and desipramine level in the rat brain. Biochem. Pharmacol. (1986) 35:3249–3253.
  • DANIEL W: Pharmacokinetic interaction between imipramine and antidepressant neuroleptics in rats. Pol. J. Pharmacol. Pharm. (1991) 43:197–202.
  • SYREK M, WÓJCIKOWSKI J, DANIELWA: Promazine pharmacokinetics during concurrent treatment with tricyclic antidepressants. Pol. J. Pharmacol. (1997) 49:453–462.
  • DANIEL WA, SYREK M, HADUCH A, WÓJCIKOWSKI J: Different effects of amitriptyline and imipramine on the pharmacokinetics and metabolism of perazine in rats. J. Pharm. Pharmacol. (2000) 52:1473–1481.
  • DANIEL W A, SYREK M, HADUCH A, WÓJCIKOWSKI J: Pharmacokinetics and metabolism of thioridazine during coadministration of tricyclic antidepressants. Br. J. Pharmacol. (2000) 131:287–295.
  • DANIEL WA, SYREK M, WÓJCIKOWSKI J: The influence of selective serotonin reuptake inhibitors on the plasma and brain pharmacokinetics of the simplest phenothiazine neuroleptic promazine in the rat. Eur. Neuropsychopharmacol. (1999) 9:337–344.
  • JUS A, GAUTIER J, VILLENEUVUE A et al.: Pharmacokinetic interaction between amitriptyline and neuroleptics. Neuropsychobiology (1978) 4:305–310.
  • LOGA S, CURRY S, LADER M: Interaction of chloropromazine and nortriptyline in patients with schizophrenia. Clin. Pharmacokinet. (1981) 6:454–462.
  • HALL J, NARANJO CA, SPROULE BA, HERRMANN N: Pharmacokinetic and pharmacodynamic evaluation of the inhibition of alprazolam by citalopram and fluoxetine. J. Clin. Psychopharmacol. (2003) 23:349–357.
  • LANE R: Pharmacokinetic drug interaction potential of selective serotonin reuptake inhibitors. Int. Clin. Psychopharmacol. (1996) 11(Suppl. 5):31–61.
  • BAUMANN P: Pharmacokinetic- Pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin. Pharmacokinet. (1996) 31:444–469.
  • PRESKORN S: Clinically relevant pharmacology of selective serotonin reuptake inhibitors. Clin. Pharmacokin. (1997) 32(Suppl. 1):1–21.
  • SPROULE BA, NARANJO CA, BRENMER KE, HASSAN PC: Selective serotonin reuptake inhibitors and CNS drug interactions. A critical review of the evidence. Clin. Pharmacokinet. (1997) 33:454–471.
  • WÓJCIKOWSKI J, DANIEL WA: The role of the tuberoinfundibular dopaminergic pathway in the regulation of cytochrome P-450. 8th World Congress of Biological Psychiatry. Vienna, Austria. World J. Biol. Psychiatry (2005) 6(Suppl. 1):356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.