240
Views
69
CrossRef citations to date
0
Altmetric
Technology Evaluation

Computational prediction of human drug metabolism

, , , , , & show all
Pages 303-324 | Published online: 16 Aug 2005

Bibliography

  • FDA: Innovation stagnation: challenge and opportunity on the critical path to new medicinal products (2004).
  • WYNALDA MA, WIENKERS LC: Assessment of potential interactions between dopamine agonists and various human cytochrome P450 enzymes using a simple in vitro inhibition screen. Drug Metab. Dispos. (1997) 25:1211–1214.
  • GAO F, JOHNSON DL, EKINS S et al.: Optimizing higher throughput methods to assess drug-drug interactions for CYP1A2, CYP2C9, CYP2C19, CYP2D6, rCYP2D6 and CYP3A4 in vitro using a single point IC50. J. Biomol. Screen (2002) 7:373–382.
  • LINGET J-M, VIGNARD PD: Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler. J. Pharm. Biomed. Anal. (1999) 19:893–901.
  • EKINS S, RING BJ, GRACE J, MCROBIE-BELLE DJ, WRIGHTON SA: Present and future in vitro approaches for drug metabolism. J. Pharmacol. Toxicol. Methods (2000) 44:313–324.
  • EDDERSHAW PJ, DICKINS M: Advances in in vitro drug metabolism screening. Pharm. Sci. Technol. Today (1999) 2:13–19.
  • LEACH AR, HANN MM: The in silico world of virtual libraries. Drug Discovery Today (2000) 5:326–336.
  • SHIMADA J, EKINS S, ELKIN C, SHAKNOVICH EI, WERY J-P: Integrating computer-based de novo drug design and multidimensional filtering for desirable drugs. Targets (2002) 1:196–205.
  • EKINS S, DE GROOT M, JONES JP: Pharmacophore and three dimensional quantitative structure activity relationship methods for modeling cytochrome P450 active sites. Drug Metab. Dispos. (2001) 29:936–944.
  • EKINS S, BERBAUM J, HARRISON RK: Generation and validation of rapid computational filters for CYP2D6 and CYP3A4. Drug Metab. Dispos. (2003) 31:1077–1080.
  • BUTINA D, SEGALL MD, FRANKCOMBE K: Predicting ADME properties in silico: methods and models. Drug Disc. Today (2002) 7:S83–S88.
  • EKINS S, WALLER CL, SWAAN PW et al.: Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods (2000) 44(1):251–272.
  • EKINS S, BOULANGER B, SWAAN PW, HUPCEY MAZ: Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J. Comput. Aided Mol. Des. (2002) 16:381–401.
  • WESSEL MD, MENTE S: ADME by computer. Ann. Reports in Med. Chem. (2001) 36:257–266.
  • VAN DE WATERBEEMD H, GIFFORD E: ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. (2003) 2:192–204.
  • EKINS S, ROSE JP: In silico ADME/Tox: the state of the art. J. Mol. Graph (2002) 20:305–309.
  • BARRATT MD, RODFORD RA: The computational prediction of toxicity. Curr. Opin. Chem. Biol. (2001) 5:383–388.
  • JOHNSON DE, WOLFGANG GHI: Predicting human safety: screening and computational approaches. Drug Disc. Today (2000) 5:445–454.
  • ERHARDT PW: Drug metabolism data: past and present status. Med. Chem. Res. (1998) 8:400–421.
  • ERHARDT PW: A human drug metabolism database: potential roles in the quantitative predictions of drug metabolism and metabolism-related drug-drug interactions. Curr. Drug Metab. (2003) 4:411–422.
  • LANGOWSKI J, LONG A: Computer systems for the prediction of xenobiotic metabolism. Adv. Drug Del. Rev. (2002) 54:407–415.
  • NELSON DR: Introductory remarks on human CYPs. Drug Metab. Rev. (2002) 34:1–5.
  • WILLIAMS JA, HYLAND R, JONES BC et al.: Drug-drug interactions for UDPglucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (auci/auc) ratios. Drug Metab. Dispos. (2004) 32(11):1201–1208.
  • EKINS S: Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discovery Today (2004)
  • LEWIS DFV: Cytochromes P450. Taylor ’ Francis, Bristol, UK (1996).
  • VANDENBRANDEN M, WRIGHTON SA, EKINS S et al.: Alterations in the catalytic activities of drugmetabolizing enzymes in cultures of human liver slices. Drug Metab. Dispos. (1998) 26:1063–1068.
  • EKINS S, MAENPAA J, WRIGHTON SA: In vitro metabolism: subcellular fractions. In: Handbook of drug metabolism. TF Woolf (Ed.), Marcel Dekker, New York, USA (1999):363–399.
  • TUKEY RH, STRASSBURG CP: Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Ann. Rev. Pharmacol. Toxicol. (2000) 40:581–616.
  • HANSCH C: Quantitative relationships between lipophilic character and drug metabolism. Drug Metab. Rev.s (1972) 1:1–14.
  • HANSCH C: The QSAR paradigm in the design of less toxic molecules. Drug Metabolism Reviews (1984) 15:1279–1294.
  • HANSCH C, LIEN EJ, HELMER F: Structure-activity correlations in the metabolism of drugs. Arch. Biochem. Biophys. (1968) 128:319–330.
  • HANSCH C, ZHANG L: Quantitative structure-activity relationships of cytochrome P-450. Drug Metab. Rev. (1993) 25:1–48.
  • AUSTEL VAK E: Absorption, distribution, and metabolism of drugs. In: Quantitative structure-activity relationships of drugs. JG Topliss, V Austel, E Kutter (Eds), Academic Press, NY, USA (1983):437–496.
  • NELSON DR, KOYMANS L, KAMATAKI T et al.: P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics (1996) 6:1–42.
  • MACKENZIE PI, OWENS IS, BURCHELL B et al.: The UDP glycosyltransferase gene superfamily: recommended nomenclature based on evolutionary divergence. Pharmacogenetics (1997) 7:255–269.
  • LEWIS DFV: Quantitative structure activity relationships in substrates, inducers, and inhibitors of cytochrome P4501 (CYP1). Drug Metab. Rev. (1997) 29:589–650.
  • LEWIS DFV: On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics. Biochem. Pharmacol. (2000) 60:293–306.
  • LEWIS DFV: Structural characteristics of human P450s involved in drug metabolism: QSARs and lipophilicity profiles. Toxicology (2000) 144:197–203.
  • LEWIS DFV, EDDERSHAW PJ, DICKINS M, TARBIT MH, GOLDFARB PS: Structural determinants of cytochrome P450 substrate specificity, binding affinity and catalytic rate. Chem. Biol. Interact. (1998) 115:175–199.
  • LEWIS DFV, EDDERSHAW PJ, DICKINS M, TARBIT MH, GOLDFARB PS: Erratum to Structural determinants of cytochrome P450 substrate specificity, binding affinity and catalytic rate. Chem. Biol. Interact. (1999) 117:187.
  • LEWIS DF, JACOBS MN, DICKINS M: Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Disc. Today (2004) 9(12):530–537.
  • FUHR U, STROBL G, MANAUT F et al.: Quinolone antibacterial agents: relationship between structure and in vitro inhibition of human cytochrome P450 isoform CYP1A2. Molecular Pharmacology (1993) 43:191–199.
  • JONES JP, HE M, TRAGER WF, RETTIE AE: Three-dimensional quantitative structure-activity relationship for inhibitors of cytochrome P4502C9. Drug Metab. Dispos. (1996) 24:1–6.
  • WALLER CL, EVANS MV, MCKINNEY JD: Modeling the cytochrome P450-mediated metabolism of chlorinated volatile organic compounds. Drug Metab. Dispos. (1996) 24:203–210.
  • EKINS S, SWAAN PW: Computational models for enzymes, transporters, channels and receptors relevant to ADME/Tox. Rev. Comp. Chem. (2004) 20:333–415.
  • DE GROOT MJ, EKINS S: Pharmacophore modeling of cytochromes P450. Adv. Drug Del. Rev. (2002) 54:367–383.
  • EKINS S, VANDENBRANDEN M, RING BJ, WRIGHTON SA: Examination of purported probes of human CYP2B6. Pharmacogenetics (1997) 7:165–179.
  • EKINS S, VANDENBRANDEN M, RING BJ et al.: Further characterization of the expression and catalytic activity of human CYP2B6. J. Pharmacol. Exp. Ther. (1998) 286:1253–1259.
  • EKINS S, BRAVI G, RING BJ et al.: Three dimensional-quantitative structure activity relationship (3D-QSAR) analyses of substrates for CYP2B6. J. Pharmcol. Exp. Ther. (1999) 288:21–29.
  • EKINS S, BRAVI G, WIKEL JH, WRIGHTON SA: Three dimensional quantitative structure activty relationship (3D-QSAR) analysis of CYP3A4 substrates. J. Pharmacol. Exp. Ther. (1999) 291:424–433.
  • EKINS S, BRAVI G, BINKLEY S et al.: Three and four dimensional-quantitative structure activity relationship (3D/4DQSAR) analyses of CYP2D6 inhibitors. Pharmacogenetics (1999) 9:477–489.
  • EKINS S, BRAVI G, BINKLEY S et al.: Three and four dimensional-quantitative structure activity relationship analyses of CYP3A4 inhibitors. J. Pharmacol. Exp. Ther. (1999) 290:429–438.
  • EKINS S, BRAVI G, BINKLEY S et al.: Three and four dimensional-quantitative structure activity relationship (3D/4DQSAR) analyses of CYP2C9 inhibitors. Drug Metab. Dispos. (2000) 28:994–1002.
  • SNYDER R, SANGAR R, WANG J, EKINS S: Three dimensional quantitative structure activity relationship for CYP2D6 substrates. Quant. Struct. Act. Relationship (2002) 21:357–368.
  • EKINS S, STRESSER DM, WILLIAMS JA: In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol. Sci. (2003) 24:191–196.
  • EKINS S, WRIGHTON SA: Application of in silico approaches to predicting drug- drug interactions: A commentary. J. Pharm. Toxicol. Methods (2001) 44:1–5.
  • ASIKAINEN A, TARHANEN J, POSO A et al.: Predictive value of comparative molecular field analysis modelling of naphthalene inhibition of human CYP2A6 and mouse CYP2A5 enzymes. Toxicol. In Vitro (2003) 17(4):449–455.
  • FUHR U, STROBL G, MANAUT F et al.: Quinolone antibacterial agents: relationship between structure and in vitro inhibition of human cytochrome P450 isoform CYP1A2. Mol. Pharmacol. (1993) 43:191–199.
  • WANG Q, HALPERT JR: Combined three-dimensional quantitative structure—activity relationship analysis of cytochrome P450 2B6 substrates and protein homology modeling. Drug Metab. Dispos. (2002) 30:86–95.
  • AFZELIUS L, ZAMORA I, RIDDERSTROM M et al.: Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three dimensional quantitative structure activity relationship analysis. Mol. Pharmacol. (2001) 59:909–919.
  • EKINS S, WRIGHTON SA: The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. (1999) 31:719–754.
  • EKINS S, RING BJ, BINKLEY SN, HALL SD, WRIGHTON SA: Autoactivation and activation of cytochrome P450s. Int. J. Clin. Pharmacol. Ther. (1998) 36:642–651.
  • WRIGHTON SA, SCHUETZ EG, THUMMEL KE et al.: The human CYP3A subfamily: practical considerations. Drug Metab. Rev. (2000) 32:339–361.
  • HARLOW GR, HALPERT JR: Alaninescanning mutagenesis of a putative substrate recognition site in human cytochrome P4503A4. J. Biol. Chem. (1997) 272:5396–5402.
  • DOMANSKI TL, LIU J, HARLOW GR, HALPERT JR: Analysis of four residues within substrate recognition site 4 of human cytochrome P450 3A4: role in steroid hydroxylase activity and a-napthoflavone stimulation. Arch. Biochem. Biophys. (1998) 350:223–232.
  • DOMANSKI TL, HE Y-A, HARLOWGR, HALPERT JR: Dual role of human cytochrome P450 3A4 residue Phe-304 in substrate specificity and cooperativity. J. Pharmacol. Exp. Ther. (2000) 293:585–591.
  • XUE L, WANG HF, WANG Q et al.: Influence of P450 3A4 SRS-2 residues on cooperativity and/or regioselectivity of aflatoxin B1 oxidation. Chem. Res. Toxicol. (2001) 14:483–491.
  • HE YA, HE YQ, SZKLARZ GD, HALPERT JR: Identification of three key residues in substrate recognition site 5 of human cytochrome P450 3A4 by cassette and site-directed mutagenesis. Biochemistry (1997) 36:8831–8839.
  • EKINS S, RING BJ, BINKLEY SN, HALL SD, WRIGHTON SA: Autoactivation and activation of cytochrome P450s. Int. J. Clin. Pharmacol. Ther. (1998) 36:642–651.
  • EGNELL AC, HOUSTON JB, BOYER CS: Predictive models of CYP3A4 heteroactivation: in vitro—in vivo scaling and pharmacophore modelling. J. Pharmacol. Exp. Ther. (2004).
  • EGNELL AC, ERIKSSON C, ALBERTSON N, HOUSTON B, BOYER S: Generation and evaluation of a CYP2C9 heteroactivation pharmacophore. J. Pharmacol. Exp. Ther. (2003) 307(3):878–887.
  • COSME J, JOHNSON EF: Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J. Biol. Chem. (2000) 275:2545–2553.
  • WILLIAMS PA, COSME J, WARD A et al. : Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature (2003) 424:464–468.
  • WILLIAMS PA, COSME J, SRIDHAR V, JOHNSON EF, MCREE DE: Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell (2000) 5:121–131.
  • WILLIAMS PA, COSME J, VINKOVIC DM et al.: Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science (2004) 305(5684):683–686.
  • YANO JK, WESTER MR, SCHOCH GA et al.: The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J. Biol. Chem. (2004) 279(37):38091–38094.
  • KOYMANS LMH, VERMEULEN NPE, BAARSLAG A, DONNE-OP DEN, KELDER GM: A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building. J. Comp. Aided Mol. Des. (1993) 7:281–289.
  • MODI S, PAINE MJ, SUTCLIFFE MJ et al.: A model for human cytochrome P4502D6 based on homology modeling and NMR studies of substrate binding. Biochemistry (1996) 35:4540–4550.
  • LEWIS DFV, LAKE BG, DICKINS M et al.: Molecular modelling of CYP2B6, the human CYP2B isoform, by homology with the substrate-bound CYP102 crystal structure: evaluation of CYP2B6 substrate characteristics, the cytochrome b5 binding site and comparisons with CYP2B1 and CYP2B4. Xenobiotica (1999) 29:361–393.
  • SZKLARZ GD, HALPERT JR: Use of homology modeling in conjunction with site-directed mutagenesis for analysis of structure-function relationships of mammalian cytochromes P450. Life Sci. (1997) 61:2507–2520.
  • SZKLARZ GD, HALPERT JR: Molecular modeling of cytochrome P4503A4. J. Comp. Aided Mol. Des. (1997) 11:265–272.
  • SZKLARZ GD, GRAHAM SE, PAULSEN MD: Molecular modeling of mammalian cytochromes P450: application to study enzyme function. Vitam. Horm. (2000) 58:53–87.
  • LEWIS DFV, EDDERSHAW PJ, GOLDFARB PS, TARBIT MH: Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica (1997) 27:319–340.
  • LEWIS DFV, EDDERSHAW PJ, GOLDFARB PS, TARBIT MH: Molecular modelling of CYP3A4 from an alignment with CYP102: identifcation of key interactions between putative active site residues and CYP3A-specific chemicals. Xenobiotica (1996) 10:1067–1086.
  • LEWIS DFV, DICKINS M, WEAVER RJ et al.: Molecular modelling of human CYP2C subfamily enzymes CYP2C9 and CYP2C19: rationalization of substrate specificity and site-directed mutagenesis experiments in the CYP2C subfamily. Xenobiotica (1998) 28:235–268.
  • LEWIS DFV: Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Xenobiotica (1995) 25:333–366.
  • WISEMAN H, LEWIS DFV: The metabolism of tamoxifen by human cytochromes P450 is rationalized by molecular modelling of the enzyme substrate interactions: potential importance to its proposed anti-carcingenic/ carcinogenic actions. Carcinogenesis (1996) 17:1357–1360.
  • BARHELT C, SCHMID RD, PLEISS J: Regioselectivity of CYP2B6: homology modeling, molecular dynamics simulation, docking. J. Mol. Model. (2002) 8:327–335.
  • DE GROOT MJ, ALEX AA, JONES BC: Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J. Med. Chem. (2002) 45:1983–1993.
  • DE GROOT MJ, ACKLAND MJ, HORNE VA, ALEX AA, JONES BC: Novel approach to predicting P450- mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. J. Med. Chem. (1999) 42:1515–1524.
  • DE GROOT MJ, ACKLAND MJ, HORNE VA, ALEX AA, JONES BC: A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J. Med. Chem. (1999) 42:4062–4070.
  • ETHELL BT, EKINS S, WANG J, BURCHELL B: Quantitative structure—activity relationships for the glucuronidation of simple phenols by expressed human UGT1A6 and UGT1A9. Drug Metab. Dispos. (2002) 30:734–738.
  • SMITH PA, SORICH M, MCKINNON R, MINERS JO: QSAR and pharmacophore modelling approaches for the prediction of UDPglucuronosyltransferase substrate selectivity and binding. XIVth World congress of Pharmacology. San Francisco, CA, USA (2002). [poster].
  • SMITH PA, SORICH MJ, MCKINNON RA, MINERS JO: Pharmacophore and quantitative structure—activity relationship modeling: complementary approaches for the rationalization and prediction of UDPglucuronosyltransferase 1A4 substrate selectivity. J. Med. Chem. (2003) 46:1617–1626.
  • SORICH M, SMITH PA, MCKINNON RA, MINERS JO: Pharmacophore and quantitative structure activity relationship modelling of UDPglucuronosyltransferase 1A1 (UGT1A1) substrates. Pharmacogenetics (2002) 12:635–645.
  • SMITH PA, SORICH MJ, MCKINNON RA, MINERS JO: In silico insights: chemical and structural characteristics associated with uridine diphosphate-glucuronosyltransferase substrate selectivity. Clin. Exp. Pharmacol. Physiol. (2003) 30(11):836–840.
  • SORICH MJ, MINERS JO, MCKINNON RA, SMITH PA: Multiple pharmacophores for the investigation of human UDP-glucuronosyltransferase isoform substrate selectivity. Mol. Pharmacol. (2004) 65(2):301–308.
  • SORICH MJ, MCKINNON RA, MINERS JO, WINKLER DA, SMITH PA: Rapid prediction of chemical metabolism by human UDPglucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method. J. Med. Chem. (2004) 47(21):5311–5317.
  • DAJANI R, CLEASBY A, NEU M et al.: X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. J. Biol. Chem. (1999) 53:37862–37868.
  • GAMAGE NU, DUGGLEBY RG, BARNETT AC et al.: Structure of a human carcinogen-converting enzyme, SULT1A1. J. Biol. Chem. (2003) 278:7655–7662.
  • BALAKIN KV, EKINS S, BUGRIM A et al.: Kohonen maps for prediction of binding to human cytochrome P450 3A4. Drug Metab. Dispos. (2004) 32:1183–1189.
  • BALAKIN KV, EKINS S, BUGRIM A et al.: Quantitative structure-metabolism relationship modeling of the metabolic N-dealkylation rates. Drug Metab. Dispos. (2004) 32:1111–1120.
  • KOROLEV D, BALAKIN KV, NIKOLSKY Y et al.: Modeling of human cytochrome P450-mediated drug metabolism using unsupervised machine learning approach. J. Med. Chem. (2003) 46:3631–3643.
  • BUGRIM A, NIKOLSKAYA T, NIKOLSKY Y: Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Disc. Today (2004) 9:127–135.
  • SHEN M, XIAO Y, GOLBRAIKH A, GOMBAR VK, TROPSHA A: Development and validation of k-nearest neighbour QSPR models of metabolic stability of drug candidates. J. Med. Chem. (2003) 46:3013–3020.
  • BENNETT KP, EMBRECHTS MJ: An optimization perspective on kernel partial least squares regression. In: Advances in learning theory; methods, models and applications. JAK Suykens et al. (Eds), IOS Press, Amsterdam, The Netherlands (2003):227–250.
  • CHRISTIANINI N, SHAWE-TAYLOR J: Support vector machines and other kernelbased learning methods. Cambridge University Press, Cambridge, MA, USA (2000).
  • ROSIPAL R, TREJO LJ: Kernel partial least squares regression in reproducing kernel hilbert space. J. Machine Learning Research (2001) 2:97–123.
  • ZERNOV VV, BALAKIN KV, IVASHCHENKO AA, SAVCHUK NP, PLETNEV IV: Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J. Chem. Inf. Comp. Sci. (2003) 43:2048–2056.
  • WARMUTH MK, LIAO J, RATSCH G et al.: Active learning with support vector machines in the drug discovery process. J. Chem. Inf. Comp. Sci. (2003) 43:667–673.
  • TAKAOKA Y, ENDO Y, YAMANOBE S et al.: Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemistsȁ intuition. J. Chem. Inf. Comp. Sci. (2003) 43(4):1269–1275.
  • LIND P, MALTSEVA T: Support vector machines for the estimation of aqueous solubility. J. Chem. Inf. Comp. Sci. (2003) 43:1855–1859.
  • BRENEMAN C, SUNDLING C, SUKUMAR N et al.: New developments in PEST shape/property hybrid descriptors. J. Comp. Aided Mol. Des. (2003) 17:231–240.
  • JONES JP, MYSINGER M, KORZEKWA KR: Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen abstraction. Drug Metab. Dispos. (2002) 30:7–12.
  • JONES JP, KORZEKWA KR: Predicting the rates and regioselectivity of reactions mediated by the P450 superfamily. (Ed.) Academic Press, Inc., New York, USA (1996):326–335.
  • SINGH SB, SHEN LQ, WALKER MJ, SHERIDAN RP: A model for likely sites of CYP3A4-mediated metabolism on drug-like molecules. J. Med. Chem. (2003) 46:1330–1336.
  • CSANADY GA, LAIB JG: Metabolic transformation of halogenated and other alkenes- a theoretical approach. Estimation of metabolic reactivities for in vivo conditions. Toxicology (1995) 75:217–223.
  • YIN H, ANDERS MW, KORZEKWA KR et al.: Designing safer chemicals: predicting the rates of metabolism of halogenated alkanes. Proc. Natl. Acad. Sci. USA (1995) 92:11076–11080.
  • KORZEKWA K, EWING TJ, KOCHER JP, CARLSON TJ: Models for cytochrome P450-mediated metabolism. In: Pharmaceutical Profiling in Drug Discovery for Lead Selection. RT Borchardt et al. (Eds), AAPS Press, AZ USA (2004):69–80.
  • BURSI R, DE GOOYER ME, GROOTENHUIS A et al.: (Q)SAR study on the metabolic stability of steroidal androgens. J. Mol. Graph Model. (2001) 19:552–556.
  • EKINS S, BUGRIM A, NIKOLSKY Y, NIKOLSKAYA T: Systems biology: applications in drug discovery. In: Drug discovery handbook. S Gad (Ed.), Wiley, New York, USA (2005).
  • OLIVER DE, RUBIN DL, STUART JM et al.: Ontology development for a pharmacogenetics knowledge base. Pac. Symp. Biocomp. (2002):88–99.
  • NAKATA K, YUKAWA M, KOMIYAMA N, NAKANO T, KAMINUMA T: A nuclear receptor database that maps pathways to diseases. Genome Infomatics (2002) 13:515–516.
  • YAN Q, SADEE W: Human membrane transporter database: a web-accessible relational database for drug transport studies and pharmacogenomics. AAPS Pharmsci. (2000) 2:E20.
  • SUN LZ, JI ZL, CHEN X, WANG JF, CHEN YZ: ADME-AP: a database of ADME associated proteins. Bioinformatics (2002) 18:1699–1700.
  • ERHARDT PW: A human drug metabolism database: potential roles in the quantitative predictions of drug metabolism and metabolism-related drug—drug interactions. Curr. Drug Metab. (2003) 4:411–422.
  • BOYER S, ZAMORA I: New methods in predictive metabolism. J. Comp. Aided Mol. Des. (2002) 16:403–413.
  • BORODINA Y, SADYM A, FILIMONOV D et al.: Predicting biotransformation potential from molecular structure. J. Chem. Inf. Comp. Sci. (2003) 43(5):1636–1646.
  • BORODINA Y, RUDIK A, FILIMONOV D et al.: A new statistical approach to predicting aromatic hydroxylation sites. Comparison with model-based approaches. J. Chem. Inf. Comp. Sci. (2004) 44(6):1998–2009.
  • SMITH RV, ERHARDT PW, LESLIE SW: Microsomal O-demethylation, N-demethylation and aromatic hydroxylation in the presence of bisulfite and dithiothreitol. Res. Commun. Chem. Path. Pharmacol. (1975) 12:181–184.
  • DARVAS F: MetabolExpert: an expert system for predicting the metabolism of substances. In: QSAR in Environmental Toxicology. KL Kaiser (Ed.), Reidel Co., Dordrecht, Germany (1987):71–81.
  • KLOPMAN G, DIMAYUGA M, TALAFOUS J: META. 1. A program for the evaluation of metabolic transformations of chemicals. J. Chem. Inf. Comp. Sci. (1994) 34:1320–1325.
  • TALAFOUS J, SAYRE LM, MIEYAL JJ, KLOPMAN G: META. 2. A dictionary model of mammalian xenobiotic metabolism. J. Chem. Inf. Comp. Sci. (1994) 34(6):1326–1333.
  • KLOPMAN G, TU M, TALAFOUS J: META. 3. A genetic algorithm for metabolic transform priorities optimization. J. Chem. Inf. Comp. Sci. (1997) 37:329–334.
  • BUTTON WG, JUDSON PN, LONG A, VESSEY JD: Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. J. Chem. Inf. Comp. Sci. (2003) 43:1371–1377.
  • HAWKINS DR: Metabolism databases: their use and value. Med. Chem. Res. (1998) 8:434–443.
  • HOU BK, ELLIS LB, WACKETT LP: Encoding microbial metabolic logic: predicting biodegradation. J. Ind. Microbiol. Biotechnol. (2004) 31(6):261–272.
  • HOU BK, WACKETT LP, ELLIS LB: Microbial pathway prediction: a functional group approach. J. Chem. Inf. Comp. Sci. (2003) 43(3):1051–1057.
  • ELLIS LB, HOU BK, KANG W, WACKETT LP: The University of Minnesota biocatalysis/biodegradation database: post-genomic data mining. Nucleic Acids Res. (2003) 31(1):262–265.
  • MEKENYAN OG, DIMITROV SD, PAVLOV TS, VEITH GD: A systematic approach to simulating metabolism in computational toxicology. I. The TIMES heuristic modelling framework. Curr. Pharm. Des. (2004) 10(11):1273–1293.
  • KESURU GM, MOLNAR L: METAPRINT: a metabolic fingerprint. Application to cassette design for highthroughput ADME screening. J. Chem. Inf. Comp. Sci. (2002) 42:437–444.
  • COOK DL, ATKINS WM: Enhanced detoxication due to distributive catalysis and toxic thresholds: a kinetic analysis. Biochemistry (1997) 36:10802–10806.
  • SO S-S, KARPLUS M: A comparitive study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. J. Comp. Aided Mol. Des. (1999) 13:243–258.
  • EKINS S, DURST GL, STRATFORD RE et al.: Three dimensional quantitative structure-permeability relationship analysis for a series of inhibitors of rhinovirus replication. J. Chem. Inf. Comp. Sci. (2001) 41:1578–1586.
  • EKINS S, MIRNY L, SCHUETZ EG: A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRa and LXRb. Pharm. Res. (2002) 19:1788–1800.
  • EKINS S, SCHUETZ E: The PXR crystal structure: the end of the beginning. TIPS (2002).
  • EKINS S, ERICKSON JA: A pharmacophore for human pregnane-Xreceptor ligands. Drug Metab. Dispos. (2002) 30:96–99.
  • MANKOWSKI DC, EKINS S: Prediction of human drug metabolizing enzyme induction. Curr. Drug Metab. (2003) 4:381–391.
  • WATKINS RE, WISELY GB, MOORE LB et al.: The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science (2001) 292:2329–2333.
  • WATKINS RE, DAVIS-SEARLES PR, LAMBERT MH, REDINBO MR: Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J. Mol. Biol. (2003) 331:815–828.
  • WATKINS RE, MAGLICH JM, MOORE LB et al.: 2.1A crystal structure of human PXR in complex with the St John’s Wort compound hyperforin. Biochemistry (2003) 42:1430–1438.
  • KAUPPI B, JAKOB C, FARNEGARDH M et al.: The threedimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J. Biol. Chem. (2003) 278(25):22748–22754.
  • XU RX, LAMBERT MH, WISELY BB et al.: A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol. Cell (2004) 16(6):919–928.
  • BERTILSSON G, HEIDRICH J, SVENSSON K et al.: Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. USA (1998) 95(21):12208–12213.
  • BLUMBERG B, SABBAGH W, JR., JUGUILON H et al.: SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. (1998) 12(20):3195–3205.
  • KLIEWER SA, MOORE JT, WADE L et al.: An orphan nuclear receptor activated by pregnanes defines a novel steroid signalling pathway. Cell (1998) 92:73–82.
  • BACHMANN K, PATEL H, BATAYNEH Z et al.: PXR and the regulation of apoA1 and HDL-cholesterol in rodents. Pharmacol. Res. (2004) 50(3):237–246.
  • LEWIS DFV, JACOBS MN, DICKINS M, LAKE BG: Quantitative structure-activity relationships for inducers of cytochromes P450 and nuclear receptor ligands involved in P450 regulation within the CYP1, CYP2, CYP3 and CYP4 families. Toxicology (2002) 176:51–57.
  • HOOD L, GALAS D: The digital code of DNA. Nature (2003) 421(6921):444–448.
  • IDEKER T, LAUFFENBURGER D: Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. (2003) 21(6):255–262.
  • BUGRIM A, NIKOLSKAYA T, NIKOLSKY Y: Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discovery Today (2004) 9:127–135.
  • EKINS S, BERBAUM J, HARRISON RK et al.: Applying computational and in vitro approaches to lead selection. In: Pharmaceutical Profiling in Drug Discovery for Lead Selection. RT Borchardt et al. (Eds). AAPS Press, AZ, USA (2004):361–389.
  • CHENG A, DILLER DJ, DIXON SL et al.: Computation of the physico-chemical properties and data mining of large molecular collections. J. Comput. Chem. (2002) 23:172–183.
  • YOUNG SS, EKINS S, LAMBERT C: So many targets, so many compounds, but so few resources. Curr. Drug Disc. (2002):17–22.
  • YOUNG SS, GOMBAR VK, EMPTAGE MR, CARIELLO NF, LAMBERT C: Mixture deconvolution and analysis of Ames mutagenicity data. Chemo. Intell. Lab. Sys. (2002) 60:5–11.
  • LI AP: A review of the common properties of drugs with idiosyncratic hepatotoxicity and the “multiple determinant hypothesis” for the manifestation of idiosyncratic drug toxicity. Chem. Biol. Interact. (2002) 142:7–23.
  • WILLIAMS DP, PARK BK: Idiosyncratic toxicity: the role of toxicophores and bioactivation. Drug Discov. Today (2003) 8:1044–1050.
  • UETRECHT J: Screening for the potential of a drug candidate to cause idiosyncratic drug reactions. Drug Discov. Today (2003) 8:832–837.
  • EKINS S, NIKOLSKY Y, NIKOLSKAYA T: Techniques: application of systems biology to absorption, distribution, metabolism, excretion, and toxicity. Trends Pharmacol. Sci. (2005) (in press).
  • NIKOLSKY Y, EKINS S, NIKOLSKAYA T, BUGRIM A: A novel method for generation of signature networks as biomarkers from complex high throughput data. Tox. Lett. (2005) (in press).
  • EKINS S, KIRILLOV E, RAKHMATULIN EA, NIKOLSKAYA T: A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism. Drug Metab. Dispos. (2005) 33:474–481.
  • UEDA A, HAMADEH HK, WEBB HK et al. : Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol. Pharmacol. (2002) 61:1–6.
  • WARING JF, GUM R, MORFITT D et al.: Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology (2002) 181–182:537–550.
  • DESTA Z, WARD BA, SOUKHOVA NV, FLOCKHART DA: Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. (2004) 310(3):1062–1075.
  • BEKAII-SAAB TS, PERLOFF MD, WEEMHOFF JL, GREENBLATT DJ, VON MOLTKE LL: Interactions of tamoxifen, N-desmethyltamoxifen and 4- hydroxytamoxifen with P-glycoprotein and CYP3A. Biopharm. Drug Dispos. (2004) 25(7):283–289.
  • ERTL P: Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J. Chem. Inf. Comp. Sci. (2003) 43:374–380.
  • KORZEKWA KR, KRISHNAMACHARY N, SHOU M et al.: Evaluation of atypical cytochrome P450 kinetics with two-substrate-models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry (1998) 37:4137–4147.
  • KIRTON SB, BAXTER CA, SUTCLIFFE MJ: Comparative modelling of the cytochromes P450. Adv. Drug Del. Rev. (2002) 54:385–406.
  • SHERIDAN RP, FEUSTON BP, MAIOROV VN, KEARSLEY SK: Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J. Chem. Inf. Comp. Sci. (2004) 44(6):1912–1928.
  • NEDELCHEVA V, GUT I: P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica (1994) 24(12):1151–1175.
  • MUGFORD CA, KEDDERIS GL: Sexdependent metabolism of xenobiotics. Drug Metab. Rev. (1998) 30(3):441–498.
  • OBACH RS: Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and non specific binding to microsomes. Drug Metab. Dispos. (1999) 27:1350–1359.
  • LAVE T, DUPIN S, SCHMITT C et al.: Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: application to 10 extensively metabolized drugs. J. Pharm. Sci. (1997) 86:584–590.
  • ITO K, IWATSUBO T, KANIMITSU S et al.: Prediction of pharmacokinetic alterations caused by drug—drug interactions: metabolic interaction in the liver. Pharmacol. Rev. (1998) 50:387–411.
  • SCHNEIDER G, COASSOLO P, LAVE T: Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. J. Med. Chem. (1999) 42:5072–5076.
  • EKINS S, OBACH RS: Three dimensionalquantitative structure activity relationship computational approaches of prediction of human in vitro intrinsic clearance. J. Pharmacol. Exp. Ther. (2000) 295:463–473.
  • DENNIS G Jr, SHERMAN BT, HOSACK DA et al.: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. (2003) 4(5):P3.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.