158
Views
19
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetic differences and drug–drug interactions in immunosuppressive therapy

&
Pages 487-503 | Published online: 29 Sep 2005

Bibliography

  • BARONE CP, MARTIN-WATSON AL, BARONE GW: The postoperative care of the adult renal transplant recipient. Medsurg. Nurs. (2004) 13(5):296–302; quiz 303.
  • HABERAL M, DALGIC A: New concepts in organ transplantation. Transplant. Proc. (2004) 36(5):1219–1224.
  • SMITH JM, MCDONALD RA: Renal transplantation in adolescents. Adolesc Med. Clin. (2005) 16(1):201–214.
  • MACDONALD A, SCAROLA J, BURKE JT, ZIMMERMAN JJ: Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin. Ther. (2000) 22(Suppl. B):B101–B121.
  • SHAW LM, KORECKA M, DENOFRIO D, BRAYMAN KL: Pharmacokinetic, pharmacodynamic, and outcome investigations as the basis for mycophenolic acid therapeutic drug monitoring in renal and heart transplant patients. Clin. Biochem. (2001) 34(1):17–22.
  • ANGLICHEAU D, LEGENDRE C, THERVET E: Pharmacogenetics in solid organ transplantation: present knowledge and future perspectives. Transplantation (2004) 78(3):311–315.
  • CATTANEO D, PERICO N, REMUZZI G: From pharmacokinetics to pharmacogenomics: a new approach to tailor immunosuppressive therapy. Am. J. Transplant. (2004) 4(3):299–310.
  • DEIERHOI MH, HAUG M 3rd: Review of select transplant subpopulations at high risk of failure from standard immunosuppressive therapy. Clin. Transplant. (2000) 14(5):439–448.
  • ROSENBAUM SE, BAHETI G, TRULL AK, AKHLAGHI F: Population pharmacokinetics of cyclosporine in cardiopulmonary transplant recipients. Ther. Drug Monit. (2005) 27(2):116–122.
  • AW MM, BROWN NW, ITSUKA T et al. : Mycophenolic acid pharmacokinetics in pediatric liver transplant recipients. Liver Transpl. (2003) 9(4):383–388.
  • DIPCHAND AI, PIETRA B, MCCRINDLE BW, ROSEBROOK-BICKNELL HL, BOUCEK MM: Mycophenolic acid levels in pediatric heart transplant recipients receiving mycophenolate mofetil. J. Heart Lung Transplant. (2001) 20(10):1035–1043.
  • FILLER G, FOSTER J, BERARD R, MAI I, LEPAGE N: Age-dependency of mycophenolate mofetil dosing in combination with tacrolimus after pediatric renal transplantation. Transplant. Proc. (2004) 36(5):1327–1331.
  • KIM JS, AVILES DH, SILVERSTEIN DM, LEBLANC PL, MATTI VEHASKARI V: Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr. Transplant. (2005) 9(2):162–169.
  • DEL MAR FERNANDEZ DE GATTA M, SANTOS-BUELGA D, DOMINGUEZ-GIL A, GARCIA MJ: Immunosuppressive therapy for paediatric transplant patients: pharmacokinetic considerations. Clin. Pharmacokinet. (2002) 41(2):115–135.
  • ETTENGER RB, GRIMM EM: Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am. J. Kidney Dis. (2001) 38(4 Suppl. 2): S22-S28.
  • OELLERICH M, ARMSTRONG VW, STREIT F, WEBER L, TONSHOFF B: Immunosuppressive drug monitoring of sirolimus and cyclosporine in pediatric patients. Clin. Biochem. (2004) 37(6):424–428.
  • SINDHI R, WEBBER S, VENKATARAMANAN R et al. : Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus. Transplantation (2001) 72(5):851–855.
  • HOYER PF, ETTENGER R, KOVARIK JM et al. : Everolimus in pediatric de nova renal transplant patients. Transplantation (2003) 75(12):2082–2085.
  • RUMBO C, SHNEIDER BL, EMRE SH: Utility of azathioprine metabolite measurements in post-transplant recurrent autoimmune and immune-mediated hepatitis. Pediatr Transplant. (2004) 8(6):571–575.
  • CHAPMAN JR, O’CONNELL PJ, BOVINGTON KJ, ALLEN RD: Reversal of cyclosporine malabsorption in diabetic recipients of simultaneous pancreas and kidney transplant using a microemulsion formulation. Transplantation. (1996) 61(12):1699–1704.
  • MUNDA R, SCHROEDER TJ, PEDERSEN SA et al. : Cyclosporine pharmacokinetics in pancreas transplant recipients. Transplant. Proc. (1988) 20(2 Suppl. 2):487–490.
  • JOHNSON HJ, SWAN SK, HEIM-DUTHOY KL, NICHOLLS AJ, TSINA I, TARNOWSKI T: The pharmacokinetics of a single oral dose of mycophenolate mofetil in patients with varying degrees of renal function. Clin. Pharmacol. Ther. (1998) 63(5):512–518.
  • KAPLAN B, MEIER-KRIESCHE HU, FRIEDMAN G et al. : The effect of renal insufficiency on mycophenolic acid protein binding. J. Clin. Pharmacol. (1999) 39(7):715–720.
  • MEIER-KRIESCHE HU, SHAW LM, KORECKA M, KAPLAN B: Pharmacokinetics of mycophenolic acid in renal insufficiency. Ther. Drug Monit. (2000) 22(1):27–30.
  • SHAW LM, MICK R, NOWAK I, KORECKA M, BRAYMAN KL: Pharmacokinetics of mycophenolic acid in renal transplant patients with delayed graft function. J. Clin. Pharmacol. (1998) 38(3):268–275.
  • WALKER S, HABIB S, ROSE M, YACOUB M, BANNER N: Clinical use and bioavailability of tacrolimus in heartlung and double lung transplant recipients with cystic fibrosis. Transplant. Proc. (1998) 30(4):1519–1520.
  • STAATZ CE, WILLIS C, TAYLOR PJ, TETT SE: Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin. Pharmacol. Ther. (2002) 72(6):660–669.
  • SIROLIMUS Rapamune oral solution (sirolimus). Wyeth-Ayerst Laboratories, Package insert, Princeton NJ, USA (1999).
  • KOVARIK JM, SABIA HD, FIGUEIREDO J et al. : Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin. Pharmacol. Ther. (2001) 70(5):425–430.
  • SCHUSZIARRA V, ZIEKURSCH V, SCHLAMP R, SIEMENSEN HC: Pharmacokinetics of azathioprine under haemodialysis. Int. J. Clin. Pharmacol. Biopharm. (1976) 14(4):298–302.
  • BISTRUP C, NIELSEN FT, JEPPESEN UE, DIEPERINK H: Effect of grapefruit juice on Sandimmun Neoral absorption among stable renal allograft recipients. Nephrol. Dial. Transplant. (2001) 16(2):373–377.
  • DAHAN A, ALTMAN H: Food-drug interaction: grapefruit juice augments drug bioavailability - mechanism, extent and relevance. Eur. J. Clin. Nutr. (2004) 58(1):1–9.
  • DRESSER GK, SCHWARZ UI, WILKINSON GR, KIM RB: Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clin. Pharmacol. Ther. (2003) 73(1):41–50.
  • TAN KK, TRULL AK, UTTRIDGE JA et al. : Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients. Clin. Pharmacol. Ther. (1995) 57(4):425–433.
  • MAI I, STORMER E, BAUER S, KRUGER H, BUDDE K, ROOTS I: Impact of St John’s wort treatment on the pharmacokinetics of tacrolimus and mycophenolic acid in renal transplant patients. Nephrol. Dial. Transplant. (2003) 18(4):819–822.
  • BEKERSKY I, DRESSLER D, MEKKI QA: Effect of low- and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects. J. Clin. Pharmacol. (2001) 41(2):176–182.
  • EGASHIRA K, FUKUDA E, ONGA T et al. : Pomelo-induced increase in the blood level of tacrolimus in a renal transplant patient. Transplantation (2003) 75(7):1057.
  • EGASHIRA K, OHTANI H, ITOH S et al. : Inhibitory effects of pomelo on the metabolism of tacrolimus and the activities of CYP3A4 and P-glycoprotein. Drug Metab. Dispos. (2004) 32(8):828–833.
  • ZIMMERMAN JJ: Exposure-response relationships and drug interactions of sirolimus. AAPS J. (2004) 6(4):e28.
  • ZIMMERMAN JJ, FERRON GM, LIM HK, PARKER V: The effect of a highfat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J. Clin. Pharmacol. (1999) 39(11):1155–1161.
  • KOVARIK JM, HARTMANN S, FIGUEIREDO J et al. : Effect of food on everolimus absorption: quantification in healthy subjects and a confirmatory screening in patients with renal transplants. Pharmacotherapy. (2002) 22(2):154–159.
  • KOVARIK JM, NOE A, BERTHIER S et al. : Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J. Clin. Pharmacol. (2003) 43(2):141–147.
  • MORISSETTE P, ALBERT C, BUSQUE S, ST-LOUIS G, VINET B: In vivo higher glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric kidney allograft and under immunosuppressive therapy with mycophenolate mofetil. Ther. Drug Monit. (2001) 23(5):520–525.
  • PESCOVITZ MD, GUASCH A, GASTON R et al. : Equivalent pharmacokinetics of mycophenolate mofetil in African-American and Caucasian male and female stable renal allograft recipients. Am. J. Transplant. (2003) 3(12):1581–1586.
  • FITZSIMMONS WE, BEKERSKY I, DRESSLER D, RAYE K, HODOSH E, MEKKI Q: Demographic considerations in tacrolimus pharmacokinetics. Transplant. Proc. (1998) 30(4):1359–1364.
  • KOVARIK JM, HSU CH, MCMAHON L, BERTHIER S, RORDORF C: Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin. Pharmacol. Ther. (2001) 70(3):247–254.
  • CHOCAIR PR, DULEY JA, SABBAGA E, ARAP S, SIMMONDS HA, CAMERON JS: Fast and slow methylators: do racial differences influence risk of allograft rejection? J. Med. (1993) 86(6):359–363.
  • WUSK B, KULLAK-UBLICK GA, RAMMERT C, VON ECKARDSTEIN A, FRIED M, RENTSCH KM: Thiopurine Smethyltransferase polymorphisms: efficient screening method for patients considering taking thiopurine drugs. Eur. J. Clin. Pharmacol. (2004) 60(1):5–10.
  • LINDHOLM A, WELSH M, ALTON C, KAHAN BD: Demographic factors influencing cyclosporine pharmacokinetic parameters in patients with uremia: racial differences in bioavailability. Clin. Pharmacol. Ther. (1992) 52(4):359–371.
  • MIN DI, LEE M KU, YM, FLANIGAN M: Gender-dependent racial difference in disposition of cyclosporine among healthy African American and white volunteers. Clin. Pharmacol. Ther. (2000) 68(5):478–486.
  • STEIN CM, SADEQUE AJ, MURRAY JJ, WANDEL C, KIM RB, WOOD AJ: Cyclosporine pharmacokinetics and pharmacodynamics in African-American and white subjects. Clin. Pharmacol. Ther. (2001) 69(5):317–323.
  • SHAW LM, KORECKA M, ARADHYE S et al. : Mycophenolic acid area under the curve values in African-American and Caucasian renal transplant patients are comparable. J. Clin. Pharmacol. (2000) 40(6):624–633.
  • NEYLAN JF: Racial differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. FK506 Kidney Transplant Study Group. Transplantation (1998) 65(4):515–523.
  • ZHENG H, ZEEVI A, SCHUETZ E et al. : Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J. Clin. Pharmacol. (2004) 44(2):135–140.
  • DIRKS NL, HUTH B, YATES CR, MEIBOHM B: Pharmacokinetics of immunosuppressants: a perspective on ethnic differences. Int. J. Clin. Pharmacol. Ther. (2004) 42(12):701–718.
  • SALMELA KT, KYLLONEN LE: Two decades of experience with cyclosporine in renal transplantation in Helsinki. Transplant. Proc. (2004) 36(2 Suppl.):94S-98S.
  • PERRY I, NEUBERGER J: Immunosuppression: towards a logical approach in liver transplantation. Clin. Exp. Immunol. (2005) 139(1):2–10.
  • POLLARD SG: Pharmacologic monitoring and outcomes of cyclosporine. Transplant. Proc. (2004) 36(2 Suppl.):404S-407S.
  • BOOTS JM, CHRISTIAANS MH, VAN HOOFF JP: Effect of immunosuppressive agents on long-term survival of renal transplant recipients: focus on the cardiovascular risk. Drugs (2004) 64(18):2047–2073.
  • THERVET E, LEGENDRE C, BEAUNE P, ANGLICHEAU D: Cytochrome P450 3A polymorphisms and immunosuppressive drugs. Pharmacogenomics (2005) 6(1):37–47.
  • KOBAYASHI M, SAITOH H, KOBAYASHI M, TADANO K, TAKAHASHI Y, HIRANO T: Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistanceassociated protein 2 in rats. J. Pharmacol. Exp. Ther. (2004) 309(3):1029–1035.
  • MACKENZIE PI: Identification of uridine diphosphate glucuronosyltransferases involved in the metabolism and clearance of mycophenolic acid. Ther. Drug Monit. (2000) 22(1):10–13.
  • PICARD N, RATANASAVANH D, PREMAUD A, LE MEUR Y, MARQUET P: Identification of the UDPglucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab. Dispos. (2005) 33(1):139–146.
  • CUMMINS CL, JACOBSEN W, CHRISTIANS U, BENET LZ: CYP3A4- transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam. J. Pharmacol. Exp. Ther. (2004) 308(1):143–155.
  • KIRCHNER GI, MEIER-WIEDENBACH I, MANNS MP: Clinical pharmacokinetics of everolimus. Clin. Pharmacokinet. (2004) 43(2):83–95.
  • EL-AZHARY RA: Azathioprine: current status and future considerations. Int. J. Dermatol. (2003) 42(5):335–341.
  • FIREMAN M, DIMARTINI AF, ARMSTRONG SC, COZZA KL: Immunosuppressants. Psychosomatics (2004) 45(4):354–360.
  • TONSHOFF B, HOCKER B, WEBER LT: Steroid withdrawal in pediatric and adult renal transplant recipients. Pediatr. Nephrol. (2005) 20(3):409–417.
  • CANTAROVICH M, BESNER JG, BARKUN JS, ELSTEIN E, LOERTSCHER R: Two-hour cyclosporine level determination is the appropriate tool to monitor Neoral therapy. Clin. Transplant. (1998) 12(3):243–249.
  • CANTAROVICH M, BARKUN JS, TCHERVENKOV JI, BESNER JG, ASPESLET L, METRAKOS P: Comparison of neoral dose monitoring with cyclosporine through levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation (1998) 66(12):1621–1627.
  • CANTAROVICH M, ELSTEIN E, DE VARENNES B, BARKUN JS: Clinical benefit of neoral dose monitoring with cyclosporine 2-hr post-dose levels compared with trough levels in stable heart transplant patients. Transplantation (1999) 68(12):1839–1842.
  • EINECKE G, MAI I, FRITSCHE L et al. : The value of C2 monitoring in stable renal allograft recipients on maintenance immunosuppression. Nephrol. Dial. Transplant. (2004) 19(1):215–222.
  • MUELLER EA, KOVARIK JM, VAN BREE JB, LISON AE, KUTZ K: Safety and steady-state pharmacokinetics of a new oral formulation of cyclosporin A in renal transplant patients. Transpl. Int. (1994) 7(Suppl. 1):S267-S269.
  • ARMSTRONG VW, OELLERICH M: New developments in the immunosuppressive drug monitoring of cyclosporine, tacrolimus, and azathioprine. Clin. Biochem. (2001) 34(1):9–16.
  • KAHAN BD, DUNN J, FITTS C et al. : Reduced inter- and intrasubject variability in cyclosporine pharmacokinetics in renal transplant recipients treated with a microemulsion formulation in conjunction with fasting, low-fat meals, or high-fat meals. Transplantation (1995) 59(4):505–511.
  • KAHAN BD, WELSH M, SCHOENBERG L et al. : Variable oral absorption of cyclosporine. A biopharmaceutical risk factor for chronic renal allograft rejection. Transplantation (1996) 62(5):599–606.
  • CHOCAIR PR, DULEY JA, SIMMONDS HA, CAMERON JS: The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation. (1992) 53(5):1051–1056.
  • WEINSHILBOUM RM, SLADEK SL: Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. (1980) 32(5):651–662.
  • KRYNETSKI EY, SCHUETZ JD, GALPIN AJ, PUI CH, RELLING MV, EVANS WE: A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc. Natl. Acad. Sci. USA (1995) 92(4):949–953.
  • OTTERNESS D, SZUMLANSKI C, LENNARD L et al. : Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin. Pharmacol. Ther. (1997) 62(1):60–73.
  • SZUMLANSKI C, OTTERNESS D, HER C et al. : Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol. (1996) 15(1):17–30.
  • TAI HL, KRYNETSKI EY, YATES CR et al. : Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am. J. Hum. Genet. (1996) 58(4):694–702.
  • YATES CR, KRYNETSKI EY, LOENNECHEN T et al. : Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. (1997) 126(8):608–614.
  • SORIA-ROYER C, LEGENDRE C, MIRCHEVA J, PREMEL S, BEAUNE P, KREIS H: Thiopurine-methyl-transferase activity to assess azathioprine myelotoxicity in renal transplant recipients. Lancet (1993) 341(8860):1593–1594.
  • GANIERE-MONTEIL C, PINEAU A, KERGUERIS MF, AZOULAY C, BOURIN M: Thiopurine methyl transferase activity: new extraction conditions for high-performance liquid chromatographic assay. J. Chromatogr. B Biomed. Sci. Appl. (1999) 727(1–2):235–239.
  • SPIRE-VAYRON DE LA MOUREYRE C, DEBUYSERE H, SABBAGH N et al. : Detection of known and new mutations in the thiopurine S-methyltransferase gene by single-strand conformation polymorphism analysis. Hum. Mutat. (1998) 12(3):177–185.
  • KUEHL P, ZHANG J, LIN Y et al. : Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. (2001) 27(4):383–391.
  • MIN DI, ELLINGROD VL, MARSH S, MCLEOD H: CYP3A5 polymorphism and the ethnic differences in cyclosporine pharmacokinetics in healthy subjects. Ther. Drug Monit. (2004) 26(5):524–528.
  • YATES CR, ZHANG W, SONG P et al. : The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J. Clin. Pharmacol. (2003) 43(6):555–564.
  • GUENGERICH FP: Cytochromes P450, drugs, and diseases. Mol. Interv. (2003) 3(4):194–204.
  • LOWN KS, KOLARS JC, THUMMEL KE et al. : Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab. Dispos. (1994) 22(6):947–955.
  • ANGLICHEAU D, LE CORRE D, LECHATON S et al. : Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am. J. Transplant. (2005) 5(3):595–603.
  • AMIRIMANI B, NING B, DEITZ AC, WEBER BL, KADLUBAR FF, REBBECK TR: Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen. (2003) 42(4):299–305.
  • FLOYD MD, GERVASINI G, MASICA AL et al. : Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics (2003) 13(10):595–606.
  • CHOU FC, TZENG SJ, HUANG JD: Genetic polymorphism of cytochrome P450 3A5 in Chinese. Drug Metab. Dispos. (2001) 29(9):1205–1209.
  • TSUCHIYA N, SATOH S, TADA H, LI Z et al. : Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation (2004) 78(8):1182–1187.
  • HESSELINK DA, VAN GELDER T, VAN SCHAIK RH et al. : Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther. (2004) 76(6):545–556.
  • HESSELINK DA, VAN SCHAIK RH, VAN DER HEIDEN IP et al. : Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. (2003) 74(3):245–254.
  • VON AHSEN N, RICHTER M, GRUPP C, RINGE B, OELLERICH M, ARMSTRONG VW: No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem. (2001) 47(6):1048–1052.
  • MACPHEE IA, FREDERICKS S, MOHAMED M et al. : Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation (2005) 79(4):499–502.
  • THERVET E, ANGLICHEAU D, KING B et al. : Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation (2003) 76(8):1233–1235.
  • HAUFROID V, MOURAD M, VAN KERCKHOVE V et al. : The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics (2004) 14(3):147–154.
  • MACKENZIE PI, OWENS IS, BURCHELL B et al. : The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics (1997) 7(4):255–269.
  • WELLS PG, MACKENZIE PI, CHOWDHURY JR et al. : Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab. Dispos. (2004) 32(3):281–290.
  • BULLINGHAM RE, NICHOLLS AJ, KAMM BR: Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet. (1998) 34(6):429–455.
  • SHIPKOVA M, ARMSTRONG VW, WIELAND E et al. : Identification of glucoside and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br. J. Pharmacol. (1999) 126(5):1075–1082.
  • SHIPKOVA M, SCHUTZ E, ARMSTRONG VW, NIEDMANN PD, OELLERICH M, WIELAND E: Determination of the acyl glucuronide metabolite of mycophenolic acid in human plasma by HPLC and Emit. Clin. Chem. (2000) 46(3):365–372.
  • WIELAND E, SHIPKOVA M, SCHELLHAAS U et al. : Induction of cytokine release by the acyl glucuronide of mycophenolic acid: a link to side effects? Clin. Biochem. (2000) 33(2):107–113.
  • NAWROCKI A, SOLARI S, KANG J, SHAW LM: Mycophenolic Acid. Lippincott, Williams and Wilkins, Philadelphia, PA, USA (2005).
  • VILLENEUVE L, GIRARD H, FORTIER LC, GAGNE JF, GUILLEMETTE C: Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7- ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J. Pharmacol. Exp. Ther. (2003) 307(1):117–128.
  • BERNARD O, GUILLEMETTE C: The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab. Dispos. (2004) 32(8):775–778.
  • BHASKER CR, MCKINNON W, STONE A et al. : Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics. (2000) 10(8):679–685.
  • HOLTHE M, KLEPSTAD P, ZAHLSEN K et al.: Morphine glucuronideto- morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1*28 polymorphisms in cancer patients on chronic morphine therapy. Eur. J. Clin. Pharmacol. (2002) 58(5):353–356.
  • SHIPKOVA M, ARMSTRONG VW, WEBER L et al. : Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther. Drug Monit. (2002) 24(3):390–399.
  • COURT MH, KRISHNASWAMY S, HAO Q et al. : Evaluation of ’-azido-’- deoxythymidine, morphine, and codeine as probe substrates for UDPglucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab. Dispos. (2003) 31(9):1125–1133.
  • HOFFMANN U, KROEMER HK: The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab. Rev. (2004) 36(3–4):669–701.
  • CHRISTIANS U: Transport proteins and intestinal metabolism: P-glycoprotein and cytochrome P4503A. Ther. Drug Monit. (2004) 26(2):104–106.
  • CASCORBI I, GERLOFF T, JOHNE A et al. : Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin. Pharmacol. Ther. (2001) 69(3):169–174.
  • ISHIKAWA T, HIRANO H, ONISHI Y, SAKURAI A, TARUI S: Functional evaluation of ABCB1 (P-glycoprotein) polymorphisms: high-speed screening and structure-activity relationship analyses. Drug Metab. Pharmacokinet. (2004) 19(1):1–14.
  • JOHNE A, KOPKE K, GERLOFF T et al. : Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin. Pharmacol. Ther. (2002) 72(5):584–594.
  • GOTO M, MASUDA S, SAITO H et al. : C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than P-gp in recipients of living-donor liver transplantation. Pharmacogenetics (2002) 12(6):451–457.
  • TANABE M, IEIRI I, NAGATA N et al. : Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J. Pharmacol. Exp. Ther. (2001) 297(3):1137–1143.
  • HOFFMEYER S, BURK O, VON RICHTER O et al. : Functional polymorphisms of the human multidrugresistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA (2000) 97(7):3473–3478.
  • ANGLICHEAU D, VERSTUYFT C, LAURENT-PUIG P et al. : Association of the multidrug resistance-1 gene singlenucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J. Am. Soc. Nephrol. (2003) 14(7):1889–1896.
  • BONHOMME-FAIVRE L, DEVOCELLE A, SALIBA F et al.: MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in livertransplant recipients. Transplantation (2004) 78(1):21–25.
  • GERLOFF T, SCHAEFER M, JOHNE A et al. : MDR1 genotypes do not influence the absorption of a single oral dose of 1 mg digoxin in healthy white males. Br. J. Clin. Pharmacol. (2002) 54(6):610–616.
  • SAKAEDA T, NAKAMURA T, HORINOUCHI M et al. : MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm. Res. (2001) 18(10):1400–1404.
  • KIM RB, LEAKE BF, CHOO EF et al. : Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther. (2001) 70(2):189–199.
  • SHAW LM, NOWAK I: Mycophenolic acid: measurement and relationship to pharmacologic effects. Ther. Drug Monit. (1995) 17(6):685–689.
  • SUZUKI H, SUGIYAMA Y: Single nucleotide polymorphisms in multidrug resistance associated protein 2 (MRP2/ ABCC2): its impact on drug disposition. Adv. Drug Deliv. Rev. (2002) 54(10):1311–1331.
  • ASANO T, NISHIMOTO K, HAYAKAWA M: Increased tacrolimus trough levels in association with severe diarrhea, a case report. Transplant. Proc. (2004) 36(7):2096–2097.
  • KUSUHARA H, SUGIYAMA Y: Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J. Control. Release. (2002) 78(1–3):43–54.
  • HIROUCHI M, SUZUKI H, ITODA M et al. : Characterization of the cellular localization, expression level, and function of SNP variants of MRP2/ABCC2. Pharm. Res. (2004) 21(5):742–748.
  • MORIYA Y, NAKAMURA T, HORINOUCHI M et al. : Effects of polymorphisms of MDR1, MRP1, and MRP2 genes on their mRNA expression levels in duodenal enterocytes of healthy Japanese subjects. Biol. Pharm. Bull. (2002) 25(10):1356–1359.
  • YAMAUCHI A, IEIRI I, KATAOKA Y et al. : Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation (2002) 74(4):571–572.
  • GAO Y, XIONG D, YANG M et al. : Efficient inhibition of multidrug-resistant human tumors with a recombinant bispecific anti-P-glycoprotein x anti-CD3 diabody. Leukemia (2004) 18(3):513–520.
  • GOTZL M, WALLNER J, GSUR A et al. : MDR1 gene expression in lymphocytes of patients with renal transplants. Nephron. (1995) 69(3):277–280.
  • BECQUEMONT L, CAMUS M, KRIAA F, BARBU V, CHARPENTIER B, JAILLON P: Low levels of lymphocyte MDR1 gene expression during early renal transplantation in patients treated with tacrolimus. Fundam. Clin. Pharmacol. (2000) 14(3):225–229.
  • PARASRAMPURIA DA, LANTZ MV, BIRNBAUM JL, VINCENTI FG, BENET LZ: Effect of calcineurin inhibitor therapy on P-gp expression and function in lymphocytes of renal transplant patients: a preliminary evaluation. J. Clin. Pharmacol. (2002) 42(3):304–311.
  • ZACHER T, THIELE B, WASSMUTH R, ALBERT FW: Cyclosporine A sensitivity in vitro and P-glycoprotein expression in patients on dialysis and after kidney transplantation. Transpl. Immunol. (2000) 8(2):147–150.
  • HYLE JW, SHAW RJ, REINES D: Functional distinctions between IMP dehydrogenase genes in providing mycophenolate resistance and guanine prototrophy to yeast. J. Biol. Chem. (2003) 278(31):28470–28478.
  • THERVET E, ANGLICHEAU D, LEGENDRE C: [Pharmacology of mycophenolate mofetil: recent data and clinical consequences]. Nephrologie. (2001) 22(7):331–337.
  • GLANDER P, HAMBACH P, BRAUN KP et al. : Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am. J. Transplant. (2004) 4(12):2045–2051.
  • BROGAN IJ, PRAVICA V, HUTCHINSON IV: Genetic conservation of the immunophilin-binding domains of human calcineurin A1 and A2. Transpl. Immunol. (2000) 8(2):139–141.
  • GUERINI D: Calcineurin: not just a simple protein phosphatase. Biochem. Biophys. Res. Commun. (1997) 235(2):271–275.
  • LIN MJ, PARSIA SS, PAPOLOS DF, LACHMAN HM: Highly polymorphic sequence variation in calcineurin B coding region (PPP3R1). Hum. Mol. Genet. (1994) 3(3):520.
  • SCHULMAN SL, PALMER J, DUNN S, KAISER BA, POLINSKY MS, BALUARTE HJ: Effect of recipient’s race on pediatric renal allograft survival: a singlecenter study. Pediatrics (1992) 89(6 Pt 1):1055–1058.
  • EMOVON OE, KING JA, HOLT CO, SINGLETON B, HOWELL D, BROWNE BJ: Effect of cyclosporin pharmacokinetics on renal allograft outcome in African-Americans. Clin. Transplant. (2003) 17(3):206–211.
  • MACPHEE IA, FREDERICKS S, TAI T et al. : The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Transplant. (2004) 4(6):914–919.
  • JIRASIRITHAM S, SUMETHKUL V, MAVICHAK V, NA-BANGCHANG K: The pharmacokinetics of mycophenolate mofetil in Thai kidney transplant recipients. Transplant. Proc. (2004) 36(7):2076–2078.
  • CHRISTIANS U, POKAIYAVANICHKUI T, CHAN L: Tacrolimus. Lippincott, Williams and Wilkins, Philadelphia, PA, USA (2005).
  • JOHNSTON A, HOLT DW: Cyclosporine. Lippincott, Williams and Wilkins, Philadelphia, PA, USA (2005).
  • PIEPER AK, BUHLE F, BAUER S et al. : The effect of sevelamer on the pharmacokinetics of cyclosporin A and mycophenolate mofetil after renal transplantation. Nephrol. Dial. Transplant. (2004) 19(10):2630–2633.
  • MCLAUGHLIN GE, ROSSIQUE-GONZALEZ M, GELMAN B, KATO T: Use of phenobarbital in the management of acute tacrolimus toxicity: a case report. Transplant. Proc. (2000) 32(3):665–668.
  • SCHONDER KS, SHULLO MA, OKUSANYA O: Tacrolimus and lopinavir/ ritonavir interaction in liver transplantation. Ann. Pharmacother. (2003) 37(12):1793–1796.
  • SHEIKH AM, WOLF DC, LEBOVICS E, GOLDBERG R, HOROWITZ HW: Concomitant human immunodeficiency virus protease inhibitor therapy markedly reduces tacrolimus metabolism and increases blood levels. Transplantation (1999) 68(2):307–309.
  • CLAESSON K, BRATTSTROM C, BURKE JT: Sirolimus and erythromycin interaction: two cases. Transplant. Proc. (2001) 33(3):2136.
  • ARONSON J: Serious drug interactions. Practitioner (1993) 237(1531):789–791.
  • CATTANEO D, PERICO N, GASPARI F, GOTTI E, REMUZZI G: Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. (2002) 62(3):1060–1067.
  • PODDER H, STEPKOWSKI SM, NAPOLI KL et al. : Pharmacokinetic interactions augment toxicities of sirolimus/ cyclosporine combinations. J. Am. Soc. Nephrol. (2001) 12(5):1059–1071.
  • JUSKO WJ, FERRON GM, MIS SM, KAHAN BD, ZIMMERMAN JJ: Pharmacokinetics of prednisolone during administration of sirolimus in patients with renal transplants. J. Clin. Pharmacol. (1996) 36(12):1100–1106.
  • PAPE L, FROEDE K, STREHLAU J, EHRICH JH, OFFNER G: Alterations of cyclosporin A metabolism induced by mycophenolate mofetil. Pediatr. Transplant. (2003) 7(4):302–304.
  • ZUCKER K, ROSEN A, TSAROUCHA A et al. : Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl. Immunol. (1997) 5(3):225–232.
  • DEL TACCA M: Prospects for personalized immunosuppression: pharmacologic tools - a review. Transplant. Proc. (2004) 36(3):687–689.
  • BACKMAN L, KREIS H, MORALES JM, WILCZEK H, TAYLOR R, BURKE JT: Sirolimus steady-state trough concentrations are not affected by bolus methylprednisolone therapy in renal allograft recipients. Br. J. Clin. Pharmacol. (2002) 54(1):65–68.
  • FLECHNER SM, GOLDFARB D, MODLIN C et al. : Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine. Transplantation (2002) 74(8):1070–1076.
  • YOKOGAWA K, SHIMADA T, HIGASHI Y et al. : Modulation of mdr1a and CYP3A gene expression in the intestine and liver as possible cause of changes in the cyclosporin A disposition kinetics by dexamethasone. Biochem. Pharmacol. (2002) 63(4):777–783.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.