475
Views
68
CrossRef citations to date
0
Altmetric
Review

Drugdrug interactions involving membrane transporters in the human kidney

, &
Pages 505-532 | Published online: 21 Jul 2006

Bibliography

  • SHITARA Y, SATO H, SUGIYAMA Y: Evaluation of drugdrug interaction in the hepatobiliary and renal transport of drugs. Ann. Rev. Pharmacol. Toxicol. (2005) 45:689-723.
  • TSUJI A: Transporter-mediated drug interactions. Drug Metab. Pharmacokinet. (2002) 17(4):253-274.
  • ENDRES CJ, HSIAO P, CHUNG FS, UNADKAT JD: The role of transporters in drug interactions. Eur J. Pharm. Sci. (2006) 27(5):501-517.
  • BONATE PL, REITH K, WEIR S: Drug interactions at the renal level. Implications for drug development. Clin. Pharmacokinet. (1998) 34(5):375-404.
  • PRITCHARD JB, MILLER DS: Mechanisms mediating renal secretion of organic anions and cations. Physiol. Rev. (1993) 73(4):765-796.
  • WRIGHT SH, DANTZLER WH: Molecular and cellular physiology of renal organic cation and anion transport. Physiol. Rev. (2004) 84(3):987-1049.
  • ZHANG L, BRETT CM, GIACOMINIKM: Role of organic cation transporters in drug absorption and elimination. Ann. Rev. Pharmacol. Toxicol. (1998) 38:431-460.
  • LEIBACH FH, GANAPATHY V: Peptide transporters in the intestine and the kidney. Ann. Rev. Nutr. (1996) 16:99-119.
  • KONG W, ENGEL K, WANG J: Mammalian nucleoside transporters. Curr. Drug Metab. (2004) 5(1):63-84.
  • INUI KI, MASUDA S, SAITO H: Cellular and molecular aspects of drug transport in the kidney. Kidney Int. (2000) 58(3):944-958.
  • LEE W, KIM RB: Transporters and renal drug elimination. Ann. Rev. Pharmacol. Toxicol. (2004) 44:137-166.
  • MASEREEUW R, RUSSEL FG: Mechanisms and clinical implications of renal drug excretion. Drug Metab. Rev. (2001) 33(3-4):299-351.
  • OTSUKA M, MATSUMOTO T, MORIMOTO R etal.: A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA (2005) 102(50):17923-17928.
  • SEKINE T, MIYAZAKI H, ENDOU H: Molecular physiology of renal organic anion transporters. Am. J. Physiol. Renal Physiol. (2006) 290(2):F251-F261.
  • YOU G: Structure, function, and regulation of renal organic anion transporters. Med. Res. Rev. (2002) 22(6):602-616.
  • RUSSEL FG, MASEREEUW R, VAN AUBEL RA: Molecular aspects of renal anionic drug transport. Ann. Rev. Physiol. (2002) 64:563-594.
  • SUN W, WU RR, VAN POELJE PD, ERION MD: Isolation of a family of organic anion transporters from human liver and kidney. Biochem. Biophys. Res. Commun. (2001) 283(2):417-422.
  • MOTOHASHI H, SAKURAI Y, SAITO H etal.: Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. (2002) 13(4):866-874.
  • BAKHIYA A, BAHN A, BURCKHARDTG, WOLFF N: Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol. Biochem. (2003) 13(5):249-256.
  • DRESSER MJ, LEABMAN MK, GIACOMINI KM: Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. (2001) 90(4):397-421.
  • TAKEDA M, NARIKAWA S, HOSOYAMADA M etal.: Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur. J. Pharmacol. (2001) 419(2-3):113-120.
  • BABU E, TAKEDA M, NARIKAWA S etal.: Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim. Biophys. Acta (2002) 1590(1-3):64-75.
  • CHA SH, SEKINE T, KUSUHARA H etal.: Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. (2000) 275(6):4507-4512.
  • EKARATANAWONG S, ANZAI N, JUTABHA P etal.: Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J. Pharmacol. Sci. (2004) 94(3):297-304.
  • HAGENBUCH B, MEIER PJ: Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. (2004) 447(5):653-665.
  • HAGENBUCH B, MEIER PJ: The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta (2003) 1609(1):1-18.
  • TAMAI I, NEZU J, UCHINO H etal.: Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. (2000) 273(1):251-260.
  • MIKKAICHI T, SUZUKI T, ONOGAWAT etal.: Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc. Natl. Acad. Sci. USA (2004) 101(10):3569-3574.
  • VAN DE WATER FM, MASEREEUW R, RUSSEL FG: Function and regulation of multidrug resistance proteins (MRPs) in the renal elimination of organic anions. Drug Metab. Rev. (2005) 37(3):443-471.
  • VAN AUBEL RA, SMEETS PH, PETERSJG, BINDELS RJ, RUSSEL FG: The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol. (2002) 13(3):595-603.
  • SCHAUB TP, KARTENBECK J, KONIGJ etal.: Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma. J. Am. Soc. Nephrol. (1999) 10(6):1159-1169.
  • SMEETS PH, VAN AUBEL RA, WOUTERSE AC, VAN DEN HEUVEL JJ, RUSSEL FG: Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J. Am. Soc. Nephrol. (2004) 15(11):2828-2835.
  • VAN AUBEL RA, SMEETS PH, VAN DEN HEUVEL JJ, RUSSEL FG: Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal Physiol. (2005) 288(2):F327-F333.
  • KOEPSELL H, ENDOU H: The SLC22 drug transporter family. Pflugers Arch. (2004) 447(5):666-676.
  • FUJITA T, URBAN TJ, LEABMAN MK, FUJITA K, GIACOMINI KM: Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J. Pharm. Sci. (2006) 95(1):25-36.
  • WU X, HUANG W, GANAPATHY ME etal.: Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am. J. Physiol. Renal Physiol. (2000) 279(3):F449-F458.
  • TAMAI I, CHINA K, SAI Y etal.: Na(+)-coupled transport of l-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim. Biophys. Acta (2001) 1512(2):273-284.
  • TAMAI I, NAKANISHI T, KOBAYASHID etal.: Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol. Pharm. (2004) 1(1):57-66.
  • YABUUCHI H, TAMAI I, NEZU J etal.: Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. (1999) 289(2):768-773.
  • GRUNDEMANN D, HARLFINGER S, GOLZ S etal.: Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. USA (2005) 102(14):5256-5261.
  • TAMAI I, OHASHI R, NEZU J etal.: Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. (1998) 273(32):20378-20382.
  • WU X, HUANG W, PRASAD PD etal.: Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther. (1999) 290(3):1482-1492.
  • AMBUDKAR SV, DEY S, HRYCYNA CA etal.: Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Ann. Rev. Pharmacol. Toxicol. (1999) 39:361-398.
  • LIN JH, YAMAZAKI M: Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin. Pharmacokinet. (2003) 42(1):59-98.
  • THIEBAUT F, TSURUO T, HAMADA H etal.: Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA (1987) 84(21):7735-7738.
  • DANIEL H, KOTTRA G: The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch. (2004) 447(5):610-618.
  • SHEN H, SMITH DE, YANG T etal.: Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. (1999) 276(5 Pt 2):F658-F665.
  • KLAPPER M, DANIEL H, DORING F: Cytosolic COOH terminus of the peptide transporter PEPT2 is involved in apical membrane localization of the protein. Am. J. Physiol. Cell Physiol. (2006) 290(2):C472-C483.
  • LI M, ANDERSON GD, PHILLIPS BR etal.: Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab. Dispos. (2006) 34(4):547-555.
  • GARRIGUES TM, MARTIN U, PERIS-RIBERA JE, PRESCOTT LF: Dose-dependent absorption and elimination of cefadroxil in man. Eur. J. Clin. Pharmacol. (1991) 41(2):179-183.
  • GARCIA-CARBONELL MC, GRANEROL, TORRES-MOLINA F etal.: Nonlinear pharmacokinetics of cefadroxil in the rat. Drug Metab. Dispos. (1993) 21(2):215-217.
  • SUN H, FRASSETTO L, BENET LZ: Effects of renal failure on drug transport and metabolism. Pharmacol. Ther. (2006) 109(1-2):1-11.
  • BARZA M, WEINSTEIN L: Pharmacokinetics of the penicillins in man. Clin. Pharmacokinet. (1976) 1(4):297-308.
  • WEINER IM, WASHINGTON JA 2nd, MUDGE GH: On the mechanism of action of probenecid on renal tubular secretion. Bull. Johns Hopkins Hosp. (1960) 106:333-346.
  • SOMOGYI A: Renal transport of drugs: specificity and molecular mechanisms. Clin. Exp. Pharmacol. Physiol. (1996) 23(10-11):986-989.
  • CARANASOS GJ, STEWART RB, CLUFF LE: Clinically desirable drug interactions. Ann. Rev. Pharmacol. Toxicol. (1985) 25:67-95.
  • BROWN GR: Cephalosporin-probenecid drug interactions. Clin. Pharmacokinet. (1993) 24(4):289-300.
  • CUNNINGHAM RF, ISRAILI ZH, DAYTON PG: Clinical pharmacokinetics of probenecid. Clin. Pharmacokinet. (1981) 6(2):135-151.
  • ENOMOTO A, TAKEDA M, SHIMODA M etal.: Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J. Pharmacol. Exp. Ther. (2002) 301(3):797-802.
  • EMANUELSSON BM, BEERMANN B, PAALZOW LK: Non-linear elimination and protein binding of probenecid. Eur. J. Clin. Pharmacol. (1987) 32(4):395-401.
  • BARBHAIYA R, THIN RN, TURNER P, WADSWORTH J: Clinical pharmacological studies of amoxycillin: effect of probenecid. Br. J. Vener. Dis. (1979) 55(3):211-213.
  • BROWN G, ZEMCOV SJ, CLARKE AM: Effect of probenecid on cefazolin serum concentrations. J. Antimicrob. Chemother. (1993) 31(6):1009-1011.
  • REIN MF, WESTERVELT FB, SANDEMA: Pharmacodynamics of cefazolin in the presence of normal and impaired renal function. Antimicrob. Agents Chemother. (1973) 4(3):366-371.
  • SPINA SP, DILLON EC Jr: Effect of chronic probenecid therapy on cefazolin serum concentrations. Ann. Pharmacother. (2003) 37(5):621-624.
  • SAKURAI Y, MOTOHASHI H, UEO H etal.: Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm. Res. (2004) 21(1):61-67.
  • JUNG KY, TAKEDA M, SHIMODA M etal.: Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. (2002) 70(16):1861-1874.
  • UEO H, MOTOHASHI H, KATSURA T, INUI K: Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem. Pharmacol. (2005) 70(7):1104-1113.
  • CUNDY KC, PETTY BG, FLAHERTY J etal.: Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. (1995) 39(6):1247-1252.
  • CUNDY KC: Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet. (1999) 36(2):127-143.
  • CIHLAR T, LIN DC, PRITCHARD JB etal.: The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol. (1999) 56(3):570-580.
  • HO ES, LIN DC, MENDEL DB, CIHLAR T: Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol. (2000) 11(3):383-393.
  • LASKIN OL, DE MIRANDA P, KINGDH etal.: Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob. Agents Chemother. (1982) 21(5):804-807.
  • DE BONY F, TOD M, BIDAULT R etal.: Multiple interactions of cimetidine and probenecid with valaciclovir and its metabolite acyclovir. Antimicrob. Agents Chemother. (2002) 46(2):458-463.
  • HEDAYA MA, ELMQUIST WF, SAWCHUK RJ: Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm. Res. (1990) 7(4):411-417.
  • TAKEDA M, KHAMDANG S, NARIKAWA S etal.: Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J. Pharmacol. Exp. Ther. (2002) 300(3):918-924.
  • BIDIVILLE J, ROCH-RAMEL F: Competition of organic anions for furosemide and p-aminohippurate secretion in the rabbit. J. Pharmacol. Exp. Ther. (1986) 237(2):636-643.
  • GEMBA M, TANIGUCHI M, MATSUSHIMA Y: Effect of bumetanide on p-aminohippurate transport in renal cortical slices. J. Pharmacobiodyn. (1981) 4(3):162-166.
  • CHENNAVASIN P, SEIWELL R, BRATER DC, LIANG WM: Pharmacodynamic analysis of the furosemideprobenecid interaction in man. Kidney Int. (1979) 16(2):187-195.
  • HOOK JB, WILLIAMSON HE: Influence of probenecid and alterations in acidbase balance of the saluretic activity of furosemide. J. Pharmacol. Exp. Ther. (1965) 149(3):404-408.
  • GUSTAFSON JH, BENET LZ: Saturable kinetics of intravenous chlorothiazide in the rhesus monkey. J. Pharmacokinet. Biopharm. (1981) 9(4):461-476.
  • MASEREEUW R, MOONS WM, RUSSEL FG: Saturable accumulation and diuretic activity of hydrochlorothiazide in the isolated perfused rat kidney. Pharmacology (1997) 54(1):33-42.
  • VREE TB, VAN DEN BIGGELAAR-MARTEA M, VERWEY-VAN WISSEN CP: Probenecid inhibits the renal clearance of frusemide and its acyl glucuronide. Br. J. Clin. Pharmacol. (1995) 39(6):692-695.
  • ODLIND B, BEERMANN B: Renal tubular secretion and effects of furosemide. Clin. Pharmacol. Ther. (1980) 27(6):784-790.
  • HASANNEJAD H, TAKEDA M, TAKI K etal.: Interactions of human organic anion transporters with diuretics. J. Pharmacol. Exp. Ther. (2004) 308(3):1021-1029.
  • ERALY SA, VALLON V, VAUGHN DA etal.: Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knockout mice. J. Biol. Chem. (2006) 281(8):5072-5083.
  • KREMER JM, HAMILTON RA: The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. J. Rheumatol. (1995) 22(11):2072-2077.
  • LIEGLER DG, HENDERSON ES, HAHN MA, OLIVERIO VT: The effect of organic acids on renal clearance of methotrexate in man. Clin. Pharmacol. Ther. (1969) 10(6):849-857.
  • FRENIA ML, LONG KS: Methotrexate and nonsteroidal antiinflammatory drug interactions. Ann. Pharmacother. (1992) 26(2):234-237.
  • THYSS A, MILANO G, KUBAR J, NAMER M, SCHNEIDER M: Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet (1986) 1(8475):256-258.
  • TAKEDA M, KHAMDANG S, NARIKAWA S etal.: Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther. (2002) 302(2):666-671.
  • HOOIJBERG JH, BROXTERMAN HJ, KOOL M etal.: Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. (1999) 59(11):2532-2535.
  • KHAMDANG S, TAKEDA M, NOSHIRO R etal.: Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Ther. (2002) 303(2):534-539.
  • SOMOGYI A, HEINZOW B: Cimetidine reduces procainamide elimination. N. Engl. J. Med. (1982) 307(17):1080.
  • SOMOGYI A, GUGLER R: Clinical pharmacokinetics of cimetidine. Clin. Pharmacokinet. (1983) 8(6):463-495.
  • SOMOGYI A, MCLEAN A, HEINZOWB: Cimetidineprocainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur. J. Clin. Pharmacol. (1983) 25(3):339-345.
  • SOMOGYI A, MUIRHEAD M: Pharmacokinetic interactions of cimetidine 1987. Clin. Pharmacokinet. (1987) 12(5):321-366.
  • TAHARA H, KUSUHARA H, ENDOU H etal.: A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J. Pharmacol. Exp. Ther. (2005) 315(1):337-345.
  • MOTOHASHI H, UWAI Y, HIRAMOTOK, OKUDA M, INUI K: Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur. J. Pharmacol. (2004) 503(1-3):25-30.
  • ZHANG X, GROVES CE, BAHN A etal.: Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. Am. J. Physiol. Renal Physiol. (2004) 287(5):F999-F1010.
  • SOMOGYI A, STOCKLEY C, KEAL J, ROLAN P, BOCHNER F: Reduction of metformin renal tubular secretion by cimetidine in man. Br. J. Clin. Pharmacol. (1987) 23(5):545-551.
  • DRESSER MJ, XIAO G, LEABMAN MK, GRAY AT, GIACOMINI KM: Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm. Res. (2002) 19(8):1244-1247.
  • KIMURA N, OKUDA M, INUI K: Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm. Res. (2005) 22(2):255-259.
  • SOMOGYI AA, HOVENS CM, MUIRHEAD MR, BOCHNER F: Renal tubular secretion of amiloride and its inhibition by cimetidine in humans and in an animal model. Drug Metab. Dispos. (1989) 17(2):190-196.
  • BIERMANN J, LANG D, GORBOULEVV etal.: Characterization of regulatory mechanisms and states of human organic cation transporter 2. Am. J. Physiol. Cell Physiol. (2006) 290(6):C1521-C1531.
  • SOMOGYI AA, BOCHNER F, SALLUSTIO BC: Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin. Pharmacol. Ther. (1992) 51(4):379-387.
  • KOSOGLOU T, ROCCI ML Jr, VLASSESPH: Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin. Pharmacol. Ther. (1988) 44(4):467-477.
  • VLASSES PH, KOSOGLOU T, CHASESL etal.: Trimethoprim inhibition of the renal clearance of procainamide and N-acetylprocainamide. Arch. Intern. Med. (1989) 149(6):1350-1353.
  • HINDERLING PH, HARTMANN D: Pharmacokinetics of digoxin and main metabolites/derivatives in healthy humans. Ther. Drug Monit. (1991) 13(5):381-401.
  • KAWAHARA M, SAKATA A, MIYASHITA T, TAMAI I, TSUJI A: Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J. Pharm. Sci. (1999) 88(12):1281-1287.
  • DURR D, STIEGER B, KULLAK-UBLICK GA etal.: St Johns Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol. Ther. (2000) 68(6):598-604.
  • DE LANNOY IA, SILVERMAN M: The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem. Biophys. Res. Commun. (1992) 189(1):551-557.
  • HAGER WD, FENSTER P, MAYERSOHN M etal.: Digoxinquinidine interaction. Pharmacokinetic evaluation. N. Engl. J. Med. (1979) 300(22):1238-1241.
  • HEDMAN A, ANGELIN B, ARVIDSSON A, DAHLQVIST R, NILSSON B: Interactions in the renal and biliary elimination of digoxin: stereoselective difference between quinine and quinidine. Clin. Pharmacol. Ther. (1990) 47(1):20-26.
  • JOGESTRAND T, SCHENCK-GUSTAFSSON K, NORDLANDER R, DAHLQVIST R: Quinidine-induced changes in serum and skeletal muscle digoxin concentration; evidence of saturable binding of digoxin to skeletal muscle. Eur. J. Clin. Pharmacol. (1984) 27(5):571-575.
  • SCHENCK-GUSTAFSSON K, JOGESTRAND T, BRODIN LA, NORDLANDER R, DAHLQVIST R: Cardiac effects of treatment with quinidine and digoxin, alone and in combination. Am. J. Cardiol. (1983) 51(5):777-782.
  • TANIGAWARA Y, OKAMURA N, HIRAIM etal.: Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J. Pharmacol. Exp. Ther. (1992) 263(2):840-845.
  • FROMM MF, KIM RB, STEIN CM, WILKINSON GR, RODEN DM: Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation (1999) 99(4):552-557.
  • DING R, TAYROUZ Y, RIEDEL KD etal.: Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin. Pharmacol. Ther. (2004) 76(1):73-84.
  • GUTMANN H, FRICKER G, DREWE J, TOEROEK M, MILLER DS: Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol. Pharmacol. (1999) 56(2):383-389.
  • DREWE J, GUTMANN H, FRICKER G etal.: HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC-833. Biochem. Pharmacol. (1999) 57(10):1147-1152.
  • ITO S, WOODLAND C, HARPER PA, KOREN G: The mechanism of the verapamildigoxin interaction in renal tubular cells (LLC-PK1). Life Sci. (1993) 53(24):PL399-PL403.
  • VERSCHRAAGEN M, KOKS CH, SCHELLENS JH, BEIJNEN JH: P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol. Res. (1999) 40(4):301-306.
  • PEDERSEN KE, DORPH-PEDERSEN A, HVIDT S, KLITGAARD NA, NIELSEN-KUDSK F: Digoxinverapamil interaction. Clin. Pharmacol. Ther. (1981) 30(3):311-316.
  • OKAMURA N, HIRAI M, TANIGAWARA Y etal.: Digoxincyclosporin A interaction: modulation of the multidrug transporter P-glycoprotein in the kidney. J. Pharmacol. Exp. Ther. (1993) 266(3):1614-1619.
  • WAKASUGI H, YANO I, ITO T etal.: Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin. Pharmacol. Ther. (1998) 64(1):123-128.
  • HIRATA S, IZUMI S, FURUKUBO T etal.: Interactions between clarithromycin and digoxin in patients with end-stage renal disease. Int. J. Clin. Pharmacol. Ther. (2005) 43(1):30-36.
  • KIRAN N, AZAM S, DHAKAM S: Clarithromycin induced digoxin toxicity: case report and review. J. Pak. Med. Assoc. (2004) 54(8):440-441.
  • RENGELSHAUSEN J, GOGGELMANNC, BURHENNE J etal.: Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin-clarithromycin interaction. Br. J. Clin. Pharmacol. (2003) 56(1):32-38.
  • XU H, RASHKOW A: Clarithromycin-induced digoxin toxicity: a case report and a review of the literature. Conn. Med. (2001) 65(9):527-529.
  • WOODLAND C, VERJEE Z, GIESBRECHT E, KOREN G, ITO S: The digoxin-propafenone interaction: characterization of a mechanism using renal tubular cell monolayers. J. Pharmacol. Exp. Ther. (1997) 283(1):39-45.
  • JALAVA KM, PARTANEN J, NEUVONEN PJ: Itraconazole decreases renal clearance of digoxin. Ther. Drug Monit. (1997) 19(6):609-613.
  • WOODLAND C, ITO S, KOREN G: A model for the prediction of digoxindrug interactions at the renal tubular cell level. Ther. Drug Monit. (1998) 20(2):134-138.
  • BACHMAKOV I, REKERSBRINK S, HOFMANN U, EICHELBAUM M, FROMM MF: Characterisation of (R/S)-propafenone and its metabolites as substrates and inhibitors of P-glycoprotein. Naunyn Schmiedebergs Arch. Pharmacol. (2005) 371(3):195-201.
  • WANDEL C, KIM RB, KAJIJI S etal.: P-glycoprotein and cytochrome P450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. (1999) 59(16):3944-3948.
  • OCHELTREE SM, SHEN H, HU Y etal.: Mechanisms of cefadroxil uptake in the choroid plexus: studies in wild-type and PEPT2 knockout mice. J. Pharmacol. Exp. Ther. (2004) 308(2):462-467.
  • SHU C, SHEN H, HOPFER U, SMITHDE: Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab. Dispos. (2001) 29(10):1307-1315.
  • BLEASBY K, HALL LA, PERRY JL, MOHRENWEISER HW, PRITCHARDJB: Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J. Pharmacol. Exp. Ther. (2005) 314(2):923-931.
  • LEABMAN MK, HUANG CC, KAWAMOTO M etal.: Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics (2002) 12(5):395-405.
  • ERDMAN AR, MANGRAVITE LM, URBAN TJ etal.: The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. Am. J. Physiol. Renal Physiol. (2006) 290(4):F905-F912.
  • MARZOLINI C, PAUS E, BUCLIN T, KIM RB: Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin. Pharmacol. Ther. (2004) 75(1):13-33.
  • ENGEL K, WANG J: Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol. Pharmacol. (2005) 68(5):1397-1407.
  • ENGEL K, ZHOU M, WANG J: Identification and characterization of a novel monoamine transporter in the human brain. J. Biol. Chem. (2004) 279(48):50042-50049.
  • TAKEDA M, BABU E, NARIKAWA S, ENDOU H: Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur. J. Pharmacol. (2002) 438(3):137-142.
  • MULATO AS, HO ES, CIHLAR T: Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther. (2000) 295(1):10-15.
  • KHAMDANG S, TAKEDA M, SHIMODA M etal.: Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J. Pharmacol. Sci. (2004) 94(2):197-202.
  • SRIMAROENG C, JUTABHA P, PRITCHARD JB, ENDOU H, CHATSUDTHIPONG V: Interactions of stevioside and steviol with renal organic anion transporters in S2 cells and mouse renal cortical slices. Pharm. Res. (2005) 22(6):858-866.
  • ISLINGER F, GEKLE M, WRIGHT SH: Interaction of 2,3-dimercapto-1-propane sulfonate with the human organic anion transporter hOAT1. J. Pharmacol. Exp. Ther. (2001) 299(2):741-747.
  • TAHARA H, KUSUHARA H, MAEDA K etal.: Inhibition of OAT3-mediated renal uptake as a mechanism for drugdrug interaction between fexofenadine and probenecid. Drug Metab. Dispos. (2006) 34(5):743-747.
  • CHA SH, SEKINE T, FUKUSHIMA JI etal.: Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. (2001) 59(5):1277-1286.
  • KIMURA H, TAKEDA M, NARIKAWA S etal.: Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. (2002) 301(1):293-298.
  • BOURDET DL, PRITCHARD JB, THAKKER DR: Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J. Pharmacol. Exp. Ther. (2005) 315(3):1288-1297.
  • CIARIMBOLI G, LUDWIG T, LANG D etal.: Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am. J. Pathol. (2005) 167(6):1477-1484.
  • GORBOULEV V, ULZHEIMER JC, AKHOUNDOVA A etal.: Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. (1997) 16(7):871-881.
  • BUSCH AE, KARBACH U, MISKA D etal.: Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol. Pharmacol. (1998) 54(2):342-352.
  • OHASHI R, TAMAI I, YABUUCHI H etal.: Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J. Pharmacol. Exp. Ther. (1999) 291(2):778-784.
  • GANAPATHY ME, HUANG W, RAJANDP etal.: -lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J. Biol. Chem. (2000) 275(3):1699-1707.
  • HAN HK, RHIE JK, OH DM etal.: CHO/hPEPT1 cells overexpressing the human peptide transporter (hPEPT1) as an alternative invitro model for peptidomimetic drugs. J. Pharm. Sci. (1999) 88(3):347-350.
  • BALIMANE PV, TAMAI I, GUO A etal.: Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. (1998) 250(2):246-251.
  • GANAPATHY ME, HUANG W, WANGH, GANAPATHY V, LEIBACH FH: Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. (1998) 246(2):470-475.
  • GUO A, HU P, BALIMANE PV, LEIBACH FH, SINKO PJ: Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. J. Pharmacol. Exp. Ther. (1999) 289(1):448-454.
  • BRETSCHNEIDER B, BRANDSCH M, NEUBERT R: Intestinal transport of -lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm. Res. (1999) 16(1):55-61.
  • LUCKNER P, BRANDSCH M: Interaction of 31 -lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1. Eur. J. Pharm. Biopharm. (2005) 59(1):17-24.
  • TERADA T, IRIE M, OKUDA M, INUIK: Genetic variant Arg57His in human H+/peptide cotransporter 2 causes a complete loss of transport function. Biochem. Biophys. Res. Commun. (2004) 316(2):416-420.
  • GANAPATHY ME, BRANDSCH M, PRASAD PD, GANAPATHY V, LEIBACH FH: Differential recognition of -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J. Biol. Chem. (1995) 270(43):25672-25677.
  • GANAPATHY ME, PRASAD PD, MACKENZIE B, GANAPATHY V, LEIBACH FH: Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT 1 and PEPT 2. Biochim. Biophys. Acta (1997) 1324(2):296-308.
  • GAO J, MURASE O, SCHOWEN RL, AUBE J, BORCHARDT RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm. Res. (2001) 18(2):171-176.
  • VAN DER SANDT IC, BLOM-ROOSEMALEN MC, DE BOER AG, BREIMER DD: Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur. J. Pharm. Sci. (2000) 11(3):207-214.
  • SPOELSTRA EC, WESTERHOFF HV, DEKKER H, LANKELMA J: Kinetics of daunorubicin transport by P-glycoprotein of intact cancer cells. Eur. J. Biochem. (1992) 207(2):567-579.
  • MAKHEY VD, GUO A, NORRIS DA etal.: Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm. Res. (1998) 15(8):1160-1167.
  • WALLE UK, WALLE T: Taxol transport by human intestinal epithelial Caco-2 cells. Drug Metab. Dispos. (1998) 26(4):343-346.
  • TAUB ME, PODILA L, ELY D, ALMEIDA I: Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Drug Metab. Dispos. (2005) 33(11):1679-1687.
  • BALIMANE PV, PATEL K, MARINO A, CHONG S: Utility of 96 well Caco-2 cell system for increased throughput of P-gp screening in drug discovery. Eur. J. Pharm. Biopharm. (2004) 58(1):99-105.
  • HUNTER J, JEPSON MA, TSURUO T, SIMMONS NL, HIRST BH: Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. (1993) 268(20):14991-14997.
  • POLLI JW, JARRETT JL, STUDENBERG SD etal.: Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm. Res. (1999) 16(8):1206-1212.
  • EKINS S, KIM RB, LEAKE BF etal.: Application of three-dimensional quantitative structureactivity relationships of P-glycoprotein inhibitors and substrates. Mol. Pharmacol. (2002) 61(5):974-981.
  • WOODAHL EL, YANG Z, BUI T, SHENDD, HO RJ: MDR1 G1199A polymorphism alters permeability of HIV protease inhibitors across P-glycoprotein-expressing epithelial cells. AIDS (2005) 19(15):1617-1625.
  • EKINS S, KIM RB, LEAKE BF etal.: Three-dimensional quantitative structureactivity relationships of inhibitors of P-glycoprotein. Mol. Pharmacol. (2002) 61(5):964-973.
  • WANG EJ, LEW K, CASCIANO CN, CLEMENT RP, JOHNSON WW: Interaction of common azole antifungals with P glycoprotein. Antimicrob. Agents Chemother. (2002) 46(1):160-165.
  • FRICKER G, DREWE J, HUWYLER J, GUTMANN H, BEGLINGER C: Relevance of P-glycoprotein for the enteral absorption of cyclosporin A: invitroinvivo correlation. Br. J. Pharmacol. (1996) 118(7):1841-1847.
  • SAEKI T, UEDA K, TANIGAWARA Y, HORI R, KOMANO T: Human P-glycoprotein transports cyclosporin A and FK-506. J. Biol. Chem. (1993) 268(9):6077-6080.
  • YOKOGAWA K, TAKAHASHI M, TAMAI I etal.: P-glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm. Res. (1999) 16(8):1213-1218.
  • BOGMAN K, ZYSSET Y, DEGEN L etal.: P-glycoprotein and surfactants: effect on intestinal talinolol absorption. Clin. Pharmacol. Ther. (2005) 77(1):24-32.
  • COLLETT A, HIGGS NB, SIMS E, ROWLAND M, WARHURST G: Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J. Pharmacol. Exp. Ther. (1999) 288(1):171-178.
  • PETRI N, TANNERGREN C, RUNGSTAD D, LENNERNAS H: Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm. Res. (2004) 21(8):1398-1404.
  • STEPHENS RH, ONEILL CA, WARHURST A etal.: Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J. Pharmacol. Exp. Ther. (2001) 296(2):584-591.
  • WOLF DC, HORWITZ SB: P-glycoprotein transports corticosterone and is photoaffinity-labeled by the steroid. Int. J. Cancer (1992) 52(1):141-146.
  • WILLIAMS GC, LIU A, KNIPP G, SINKO PJ: Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob. Agents Chemother. (2002) 46(11):3456-3462.
  • BAKOS E, EVERS R, SINKO E etal.: Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol. Pharmacol. (2000) 57(4):760-768.
  • SRINIVAS RV, MIDDLEMAS D, FLYNNP, FRIDLAND A: Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob. Agents Chemother. (1998) 42(12):3157-3162.
  • RENES J, DE VRIES EG, NIENHUIS EF, JANSEN PL, MULLER M: ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br. J. Pharmacol. (1999) 126(3):681-688.
  • KANG YH, LEE E, YOUK HJ etal.: Potentiation by -tocopheryl succinate of the etoposide response in multidrug resistance protein 1-expressing glioblastoma cells. Cancer Lett. (2005) 217(2):181-190.
  • LEIER I, JEDLITSCHKY G, BUCHHOLZ U etal.: The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. (1994) 269(45):27807-27810.
  • JEDLITSCHKY G, LEIER I, BUCHHOLZ U etal.: Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res. (1996) 56(5):988-994.
  • LEIER I, HUMMEL-EISENBEISS J, CUIY, KEPPLER D: ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. (2000) 57(4):1636-1642.
  • CUI Y, KONIG J, BUCHHOLZ JK etal.: Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. (1999) 55(5):929-937.
  • GUO A, MARINARO W, HU P, SINKOPJ: Delineating the contribution of secretory transporters in the efflux of etoposide using MadinDarby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab. Dispos. (2002) 30(4):457-463.
  • FLANAGAN SD, CUMMINS CL, SUSANTO M etal.: Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology (2002) 64(3):126-134.
  • KAWABE T, CHEN ZS, WADA M etal.: Enhanced transport of anticancer agents and leukotriene C4 by the human canalicular multispecific organic anion transporter (cMOAT/MRP2). FEBS Lett. (1999) 456(2):327-331.
  • HORIKAWA M, KATO Y, TYSON CA, SUGIYAMA Y: The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab. Pharmacokinet. (2002) 17(1):23-33.
  • ZENG H, LIU G, REA PA, KRUH GD: Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res. (2000) 60(17):4779-4784.
  • ZELCER N, SAEKI T, REID G, BEIJNENJH, BORST P: Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J. Biol. Chem. (2001) 276(49):46400-46407.
  • CHEN ZS, LEE K, KRUH GD: Transport of cyclic nucleotides and estradiol 17--d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem. (2001) 276(36):33747-33754.
  • LAI L, TAN TM: Role of glutathione in the multidrug resistance protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine analogues. Biochem. J. (2002) 361(Pt 3):497-503.
  • CHEN ZS, LEE K, WALTHER S etal.: Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. (2002) 62(11):3144-3150.
  • REID G, WIELINGA P, ZELCER N etal.: The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl. Acad. Sci. USA (2003) 100(16):9244-9249.
  • MARINO EL, DOMINGUEZ-GIL A: The pharmacokinetics of cefadroxil associated with probenecid. Int. J. Clin. Pharmacol. Ther. Toxicol. (1981) 19(11):506-508.
  • REGAMEY C, LIBKE RD, CLARKE JT, KIRBY WM: Pharmacokinetics of parenteral sodium cephalexin in comparison with cephalothin and cefazolin. Infection (1974) 2(3):132-136.
  • GRIFFITH RS, BLACK HR, BRIER GL, WOLNY JD: Effect of probenecid on the blood levels and urinary excretion of cefamandole. Antimicrob. Agents Chemother. (1977) 11(5):809-812.
  • GISCLON LG, BOYD RA, WILLIAMSRL, GIACOMINI KM: The effect of probenecid on the renal elimination of cimetidine. Clin. Pharmacol. Ther. (1989) 45(4):444-452.
  • ROBERTS DH, KENDALL MJ, JACKDB, WELLING PG: Pharmacokinetics of cephradine given intravenously with and without probenecid. Br. J. Clin. Pharmacol. (1981) 11(6):561-564.
  • VERHAGEN CA, MATTIE H, VAN STRIJEN E: The renal clearance of cefuroxime and ceftazidime and the effect of probenecid on their tubular excretion. Br. J. Clin. Pharmacol. (1994) 37(2):193-197.
  • JACOBS C, COLEMAN CN, RICH L, HIRST K, WEINER MW: Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res. (1984) 44(8):3632-3635.
  • INOTSUME N, NISHIMURA M, NAKANO M, FUJIYAMA S, SATO T: The inhibitory effect of probenecid on renal excretion of famotidine in young, healthy volunteers. J. Clin. Pharmacol. (1990) 30(1):50-56.
  • YASUI-FURUKORI N, UNO T, SUGAWARA K, TATEISHI T: Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin. Pharmacol. Ther. (2005) 77(1):17-23.
  • MASSARELLA JW, NAZARENO LA, PASSE S, MIN B: The effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm. Res. (1996) 13(3):449-452.
  • CIMOCH PJ, LAVELLE J, POLLARD R etal.: Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. (1998) 17(3):227-234.
  • JAEHDE U, SORGEL F, REITER A etal.: Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin. Pharmacol. Ther. (1995) 58(5):532-541.
  • WALLER ES, SHARANEVYCH MA, YAKATAN GJ: The effect of probenecid on nafcillin disposition. J. Clin. Pharmacol. (1982) 22(10):482-489.
  • ITOH T, WATANABE N, ISHIDA M etal.: Stereoselective disposition of sulbenicillin in humans. Antimicrob. Agents Chemother. (1998) 42(2):325-331.
  • HARDY BG, SCHENTAG JJ: Lack of effect of cimetidine on the metabolism of quinidine: effect on renal clearance. Int. J. Clin. Pharmacol. Ther. Toxicol. (1988) 26(8):388-391.
  • VAN CRUGTEN J, BOCHNER F, KEALJ, SOMOGYI A: Selectivity of the cimetidine-induced alterations in the renal handling of organic substrates in humans. Studies with anionic, cationic and zwitterionic drugs. J. Pharmacol. Exp. Ther. (1986) 236(2):481-487.
  • SHIGA T, HASHIGUCHI M, URAE A, KASANUKI H, RIKIHISA T: Effect of cimetidine and probenecid on pilsicainide renal clearance in humans. Clin. Pharmacol. Ther. (2000) 67(3):222-228.
  • FLETCHER CV, HENRY WK, NOORMOHAMED SE, RHAME FS, BALFOUR HH Jr: The effect of cimetidine and ranitidine administration with zidovudine. Pharmacotherapy (1995) 15(6):701-708.
  • MUIRHEAD M, BOCHNER F, SOMOGYI A: Pharmacokinetic drug interactions between triamterene and ranitidine in humans: alterations in renal and hepatic clearances and gastrointestinal absorption. J. Pharmacol. Exp. Ther. (1988) 244(2):734-739.
  • SOMOGYI A, BOCHNER F: Dose and concentration dependent effect of ranitidine on procainamide disposition and renal clearance in man. Br. J. Clin. Pharmacol. (1984) 18(2):175-181.
  • BAUER LA, BLACK DJ, LILL JS etal.: Levofloxacin and ciprofloxacin decrease procainamide and N-acetylprocainamide renal clearances. Antimicrob. Agents Chemother. (2005) 49(4):1649-1651.
  • CHATTON JY, MUNAFO A, CHAVE JP etal.: Trimethoprim, alone or in combination with sulphamethoxazole, decreases the renal excretion of zidovudine and its glucuronide. Br. J. Clin. Pharmacol. (1992) 34(6):551-554.
  • KOVARIK JM, RIGAUDY L, GUERRETM, GERBEAU C, ROST KL: Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin. Pharmacol. Ther. (1999) 66(4):391-400.
  • DORIAN P, STRAUSS M, CARDELLA C etal.: Digoxincyclosporine interaction: severe digitalis toxicity after cyclosporine treatment. Clin. Invest. Med. (1988) 11(2):108-112.
  • BELZ GG, DOERING W, MUNKES R, MATTHEWS J: Interaction between digoxin and calcium antagonists and antiarrhythmic drugs. Clin. Pharmacol. Ther. (1983) 33(4):410-417.
  • PETERSEN P, KASTRUP J, BARTRAMR, MOLHOLM HANSEN J: Digoxin-trimethoprim interaction. Acta Med. Scand. (1985) 217(4):423-427.
  • KAUKONEN KM, OLKKOLA KT, NEUVONEN PJ: Itraconazole increases plasma concentrations of quinidine. Clin. Pharmacol. Ther. (1997) 62(5):510-517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.