5,401
Views
228
CrossRef citations to date
0
Altmetric
Reviews

Species differences in drug transporters and implications for translating preclinical findings to humans

, &
Pages 237-252 | Published online: 21 Dec 2012

Bibliography

  • CDER. Guidance for industry: drug interaction studies-study design, data analysis, implications for dosing, and labeling recommendations (DRAFT). 2012. Available from: http://wwwfdagov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362pdf
  • EMA. Guideline on the investigation of drug interactions. 2012. Available from: http://wwwemaeuropaeu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606pdf
  • Giacomini KM, Huang SM, Tweedie DJ, Membrane transporters in drug development. Nat Rev Drug Discov 2010;9(3):215-36
  • Zamek-Gliszczynski M, Hoffmaster K, Tweedie D, Highlights from the International Transporter Consortium (ITC) 2nd Workshop. Clin Pharmacol Ther 2012; In press
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;2155(1):3-29
  • Lee CA, Cook JA, Reyner EL, P-glycoprotein related drug interactions: clinical importance and a consideration of disease states. Expert Opin Drug Metab Toxicol 2010;6(5):603-19
  • Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008;60(2):196-209
  • Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008;38(7-8):802-32
  • Devault A, Gros P. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol 1990;10(4):1652-63
  • Schinkel AH, Smit JJ, van Tellingen O, Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994;2077(4):491-502
  • Chen C, Liu X, Smith BJ. Utility of Mdr1-gene deficient mice in assessing the impact of P-glycoprotein on pharmacokinetics and pharmacodynamics in drug discovery and development. Curr Drug Metab 2003;4(4):272-91
  • Bleasby K, Castle JC, Roberts CJ, Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 2006;36(10-11):963-88
  • Warren MS, Zerangue N, Woodford K, Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 2009;59(6):404-13
  • Zhang Y, Li N, Brown PW, Liquid chromatography/tandem mass spectrometry based targeted proteomics quantification of P-glycoprotein in various biological samples. Rapid Commun Mass Spectrom 2011;3025(12):1715-24
  • Uchida Y, Ohtsuki S, Katsukura Y, Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 2011;117(2):333-45
  • Ito K, Uchida Y, Ohtsuki S, Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 2011;100(9):3939-50
  • Schaefer O, Ohtsuki S, Kawakami H, Absolute quantification and differential expression of drug transporters, cytochrome P450 enzymes, and UDP-glucuronosyltransferases in cultured primary human hepatocytes. Drug Metab Dispos 2012;40(1):93-103
  • Ohtsuki S, Schaefer O, Kawakami H, Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 2012;40(1):83-92
  • Feng B, Mills JB, Davidson RE, In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 2008;36(2):268-75
  • Yamazaki M, Neway WE, Ohe T, In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther 2001;296(3):723-35
  • Baltes S, Gastens AM, Fedrowitz M, Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 2007;52(2):333-46
  • Takeuchi T, Yoshitomi S, Higuchi T, Establishment and characterization of the transformants stably-expressing MDR1 derived from various animal species in LLC-PK1. Pharm Res 2006;23(7):1460-72
  • Katoh M, Suzuyama N, Takeuchi T, Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J Pharm Sci 2006;95(12):2673-83
  • Syvanen S, Lindhe O, Palner M, Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 2009;37(3):635-43
  • Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 2009;123(1):80-104
  • Suzuyama N, Katoh M, Takeuchi T, Species differences of inhibitory effects on P-glycoprotein-mediated drug transport. J Pharm Sci 2007;96(6):1609-18
  • Zolnerciks JK, Booth-Genthe CL, Gupta A, Substrate- and species-dependent inhibition of P-glycoprotein-mediated transport: implications for predicting in vivo drug interactions. J Pharm Sci 2011;100(8):3055-61
  • Sasongko L, Link JM, Muzi M, Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 2005;77(6):503-14
  • Bauer M, Zeitlinger M, Karch R, Pgp-mediated interaction between (R)-11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin Pharmacol Ther 2012;91(2):227-33
  • Hsiao P, Bui T, Ho RJ, In vitro-to-in vivo prediction of P-glycoprotein-based drug interactions at the human and rodent blood-brain barrier. Drug Metab Dispos 2008;36(3):481-4
  • Hsiao P, Sasongko L, Link JM, Verapamil P-glycoprotein transport across the rat blood-brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data. J Pharmacol Exp Ther 2006;317(2):704-10
  • Hsiao P, Unadkat JD. P-glycoprotein-based loperamide-cyclosporine drug interaction at the rat blood-brain barrier: prediction from in vitro studies and extrapolation to humans. Mol Pharm 2012;59(3):629-33
  • Maliepaard M, Scheffer GL, Faneyte IF, Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001;1561(8):3458-64
  • Meyer zu Schwabedissen HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb Exp Pharmacol 2011(201):325-71
  • Hilgendorf C, Ahlin G, Seithel A, Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 2007;35(8):1333-40
  • Gutmann H, Hruz P, Zimmermann C, Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem Pharmacol 2005;170(5):695-9
  • Haller S, Schuler F, Lazic SE, Expression profiles of metabolic enzymes and drug transporters in the liver and along the intestine of beagle dogs. Drug Metab Dispos 2012;40(8):1603-10
  • Taipalensuu J, Tornblom H, Lindberg G, Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 2001;299(1):164-70
  • Tanaka Y, Slitt AL, Leazer TM, Tissue distribution and hormonal regulation of the breast cancer resistance protein (Bcrp/Abcg2) in rats and mice. Biochem Biophys Res Commun 2005;7326(1):181-7
  • Kawase A, Matsumoto Y, Hadano M, Differential effects of chrysin on nitrofurantoin pharmacokinetics mediated by intestinal breast cancer resistance protein in rats and mice. J Pharm Pharm Sci 2009;12(2):150-63
  • Robey RW, To KK, Polgar O, ABCG2: a perspective. Adv Drug Deliv Rev 2009;3161(1):3-13
  • Robey RW, Ierano C, Zhan Z, The challenge of exploiting ABCG2 in the clinic. Curr Pharm Biotechnol 2011;12(4):595-608
  • Jonker JW, Smit JW, Brinkhuis RF, Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000;1892(20):1651-6
  • Yamagata T, Kusuhara H, Morishita M, Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients. Drug Metab Dispos 2007;35(7):1142-8
  • Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 2006;27(1):17-24
  • Lai Y. Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion. Expert Opin Drug Metab Toxicol 2009;5(10):1175-87
  • Li N, Palandra J, Nemirovskiy OV, LC-MS/MS mediated absolute quantification and comparison of ` and breast cancer resistance protein in livers and hepatocytes across species. Anal Chem 2009;1581(6):2251-9
  • Merino G, van Herwaarden AE, Wagenaar E, Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 2005;67(5):1765-71
  • Huls M, Brown CD, Windass AS, The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 2008;73(2):220-5
  • Vlaming ML, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 2009;3161(1):14-25
  • Lee YJ, Kusuhara H, Jonker JW, Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood-brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 2005;312(1):44-52
  • Enokizono J, Kusuhara H, Sugiyama Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 2007;72(4):967-75
  • Enokizono J, Kusuhara H, Ose A, Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos 2008;36(6):995-1002
  • Dauchy S, Dutheil F, Weaver RJ, ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 2008;107(6):1518-28
  • Kamiie J, Ohtsuki S, Iwase R, Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 2008;25(6):1469-83
  • Polli JW, Olson KL, Chism JP, An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino }methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 2009;37(2):439-42
  • Kodaira H, Kusuhara H, Ushiki J, Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 2010;333(3):788-96
  • Zamek-Gliszczynski MJ, Kalvass JC, Pollack GM, Relationship between drug/metabolite exposure and impairment of excretory transport function. Drug Metab Dispos 2009;37(2):386-90
  • Borst P, Evers R, Kool M, A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000;1692(16):1295-302
  • Toyoda Y, Hagiya Y, Adachi T, MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008;38(7-8):833-62
  • Ninomiya M, Ito K, Hiramatsu R, Functional analysis of mouse and monkey multidrug resistance-associated protein 2 (Mrp2). Drug Metab Dispos 2006;34(12):2056-63
  • Zimmermann C, van de Wetering K, van de Steeg E, Species-dependent transport and modulation properties of human and mouse multidrug resistance protein 2 (MRP2/Mrp2, ABCC2/Abcc2). Drug Metab Dispos 2008;36(4):631-40
  • Borst P, Zelcer N, van de Wetering K, On the putative co-transport of drugs by multidrug resistance proteins. FEBS Lett 2006;13580(4):1085-93
  • Li N, Zhang Y, Hua F, Absolute difference of hepatobiliary transporter multidrug resistance-associated protein (MRP2/Mrp2) in liver tissues and isolated hepatocytes from rat, dog, monkey, and human. Drug Metab Dispos 2009;37(1):66-73
  • Deo AK, Prasad B, Balogh L, Interindividual variability in hepatic expression of the multidrug resistance-associated protein 2 (MRP2/ABCC2): quantification by liquid chromatography/tandem mass spectrometry. Drug Metab Dispos 2012;40(5):852-5
  • Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011(201):299-323
  • Chu XY, Strauss JR, Mariano MA, Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J Pharmacol Exp Ther 2006;317(2):579-89
  • Vlaming ML, Mohrmann K, Wagenaar E, Carcinogen and anticancer drug transport by Mrp2 in vivo: studies using Mrp2 (Abcc2) knockout mice. J Pharmacol Exp Ther 2006;318(1):319-27
  • Lang T, Hitzl M, Burk O, Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Pharmacogenetics 2004;14(3):155-64
  • Hirohashi T, Suzuki H, Takikawa H, ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J Biol Chem 2000;28275(4):2905-10
  • Akita H, Suzuki H, Hirohashi T, Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3. Pharm Res 2002;19(1):34-41
  • Zelcer N, Saeki T, Bot I, Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochem J 2003;1369(Pt 1):23-30
  • van Aubel RA, Smeets PH, Peters JG, The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 2002;13(3):595-603
  • Rius M, Nies AT, Hummel-Eisenbeiss J, Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 2003;38(2):374-84
  • Zhang Y, Schuetz JD, Elmquist WF, Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 2004;311(2):449-55
  • Borst P, Zelcer N, van de Wetering K. MRP2 and 3 in health and disease. Cancer Lett 2006;8234(1):51-61
  • Borst P, de Wolf C, van de Wetering K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 2007;453(5):661-73
  • Schuetz EG, Strom S, Yasuda K, Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001;19276(42):39411-18
  • Chen C, Slitt AL, Dieter MZ, Up-regulation of Mrp4 expression in kidney of Mrp2-deficient TR- rats. Biochem Pharmacol 2005;170(7):1088-95
  • Johnson BM, Zhang P, Schuetz JD, Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. Drug Metab Dispos 2006;34(4):556-62
  • Yonezawa A, Inui K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol 2011;164(7):1817-25
  • Kajiwara M, Masuda S, Watanabe S, Renal tubular secretion of varenicline by multidrug and toxin extrusion (MATE) transporters. Drug Metab Pharmacokinet 2012; Epub ahead of print
  • Ohta KY, Inoue K, Yasujima T, Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci 2009;12(3):388-96
  • Ito S, Kusuhara H, Yokochi M, Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther 2012;340(2):393-403
  • Ito S, Kusuhara H, Kuroiwa Y, Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther 2010;333(1):341-50
  • Komatsu T, Hiasa M, Miyaji T, Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter. Int J Biochem Cell Biol 2011;43(6):913-18
  • Masuda S, Terada T, Yonezawa A, Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 2006;17(8):2127-35
  • Tanihara Y, Masuda S, Sato T, Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 2007;1574(2):359-71
  • Terada T, Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol 2008;175(9):1689-96
  • Omote H, Hiasa M, Matsumoto T, The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 2006;27(11):587-93
  • Terada T, Masuda S, Asaka J, Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res 2006;23(8):1696-701
  • Tsuda M, Terada T, Mizuno T, Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol 2009;75(6):1280-6
  • Yonezawa A, Masuda S, Yokoo S, Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 2006;319(2):879-86
  • Tsuda M, Terada T, Ueba M, Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther 2009;329(1):185-91
  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2004;447(5):653-65
  • Konig J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 2011(201):1-28
  • Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011;63(1):157-81
  • Ho RH, Tirona RG, Leake BF, Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006;130(6):1793-806
  • Konig J, Cui Y, Nies AT, Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem 2000;28275(30):23161-8
  • Kullak-Ublick GA, Ismair MG, Stieger B, Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 2001;120(2):525-33
  • Karlgren M, Vildhede A, Norinder U, Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem 2012;2455(10):4740-63
  • Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics 2007;8(7):787-802
  • Kusuhara H, Sugiyama Y. Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters. Drug Metab Rev 2010;42(3):539-50
  • Gui C, Hagenbuch B. Cloning/characterization of the canine organic anion transporting polypeptide 1b4 (Oatp1b4) and classification of the canine OATP/SLCO members. Comp Biochem Physiol C Toxicol Pharmacol 2010;151(3):393-9
  • Evers R, Chu XY. Role of the murine organic anion-transporting polypeptide 1b2 (Oatp1b2) in drug disposition and hepatotoxicity. Mol Pharmacol 2008;74(2):309-11
  • Iusuf D, van de Steeg E, Schinkel AH. Functions of OATP1A and 1B transporters in vivo: insights from mouse models. Trends Pharmacol Sci 2012;33(2):100-8
  • Wilby AJ, Maeda K, Courtney PF, Hepatic uptake in the dog: comparison of uptake in hepatocytes and human embryonic kidney cells expressing dog organic anion-transporting polypeptide 1B4. Drug Metab Dispos 2011;39(12):2361-9
  • Poirier A, Cascais AC, Funk C, Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Pharmacodyn 2009;36(6):585-611
  • Menochet K, Kenworthy KE, Houston JB, Simultaneous assessment of uptake and metabolism in rat hepatocytes: a comprehensive mechanistic model. J Pharmacol Exp Ther 2011;341(1):2-15
  • Menochet K, Kenworthy KE, Houston JB, Use of mechanistic modelling to assess inter-individual variability and inter-species differences in active uptake in human and rat hepatocytes. Drug Metab Dispos 2012;40(9):1744-56
  • Jones HM, Barton HA, Lai Y, Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos 2012;40(5):1007-17
  • Watanabe T, Kusuhara H, Maeda K, Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 2009;328(2):652-62
  • Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 2011(201):29-104
  • Hagos Y, Stein D, Ugele B, Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol 2007;18(2):430-9
  • Chu XY, Bleasby K, Yabut J, Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J Pharmacol Exp Ther 2007;321(2):673-83
  • Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24(7):1227-51
  • Ciarimboli G. Organic cation transporters. Xenobiotica 2008;38(7-8):936-71
  • Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol 2011;7(2):159-74
  • Jonker JW, Wagenaar E, Mol CA, Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 Slc22a1]) gene. Mol Cell Biol 2001;21(16):5471-7
  • Motohashi H, Sakurai Y, Saito H, Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 2002;13(4):866-74
  • Urakami Y, Nakamura N, Takahashi K, Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett 1999;19461(3):339-42
  • Alnouti Y, Petrick JS, Klaassen CD. Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab Dispos 2006;34(3):477-82
  • Terada T, Inui K. Gene expression and regulation of drug transporters in the intestine and kidney. Biochem Pharmacol 2007;173(3):440-9
  • Lin CJ, Tai Y, Huang MT, Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem 2010;114(3):717-27
  • Tahara H, Kusuhara H, Chida M, Is the monkey an appropriate animal model to examine drug-drug interactions involving renal clearance? Effect of probenecid on the renal elimination of H2 receptor antagonists. J Pharmacol Exp Ther 2006;316(3):1187-94
  • Tahara H, Kusuhara H, Endou H, A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 2005;315(1):337-45
  • Lin JH, Los LE, Ulm EH, Kinetic studies on the competition between famotidine and cimetidine in rats. Evidence of multiple renal secretory systems for organic cations. Drug Metab Dispos 1988;16(1):52-6
  • Choi MK, Kim H, Han YH, Involvement of Mrp2/MRP2 in the species different excretion route of benzylpenicillin between rat and human. Xenobiotica 2009;39(2):171-81
  • Klaassen CD, Lu H. Xenobiotic transporters: ascribing function from gene knockout and mutation studies. Toxicol Sci 2008;101(2):186-96
  • Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 Knockout Rats Using Loperamide, Paclitaxel, Sulfasalazine, and Carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos 2012;40(9):1825-33
  • Chu X, Zhang Z, Yabut J, Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol Pharmacol 2012;81(2):220-7
  • Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011;1051:45-73
  • van de Steeg E, van der Kruijssen CM, Wagenaar E, Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 2009;37(2):277-81
  • Bi YA, Kimoto E, Sevidal S, In vitro evaluation of hepatic transporter-mediated clinical drug-drug interactions: hepatocyte model optimization and retrospective investigation. Drug Metab Dispos 2012;40(6):1085-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.