491
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Effect of the ATP-binding cassette transporter ABCG2 on pharmacokinetics: experimental findings and clinical implications

&
Pages 287-306 | Published online: 07 Jan 2013

Bibliography

  • van Herwaarden AE, Wagenaar E, Merino G, Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol 2007;27:1247-53
  • Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 2007;114:345-58
  • Woodward OM, Kottgen A, Coresh J, Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 2009;106:10338-42
  • Zelinski T, Coghlan G, Liu XQ, Reid ME. ABCG2 null alleles define the Jr(a-) blood group phenotype. Nat Genet 2012;44:131-2
  • Saison C, Helias V, Ballif BA, Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 2012;44:174-7
  • Doyle LA, Yang W, Abruzzo LV, A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95:15665-70
  • Poguntke M, Hazai E, Fromm MF, Zolk O. Drug transport by breast cancer resistance protein. Expert Opin Drug Metab Toxicol 2010;6:1363-84
  • Allikmets R, Schriml LM, Hutchinson A, A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998;58:5337-9
  • Maliepaard M, Scheffer GL, Faneyte IF, Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001;61:3458-64
  • Meyer zu Schwabedissen HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb Exp Pharmacol 2011(201):325-71
  • Usuda J, Ohira T, Suga Y, Breast cancer resistance protein (BCRP) affected acquired resistance to gefitinib in a "never-smoked" female patient with advanced non-small cell lung cancer. Lung Cancer 2007;58:296-9
  • S, Galimberti S, Nagy B, Benedetti E, Evaluation of the MDR1, ABCG2, Topoisomerases IIalpha and GSTpi gene expression in patients affected by aggressive mantle cell lymphoma treated by the R-Hyper-CVAD regimen. Leuk Lymphoma 2007;48:1502-9
  • An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol 2009;5:1529-42
  • Lin X, Skolnik S, Chen X, Wang J. Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model. Drug Metab Dispos 2011;39:265-74
  • Vlaming ML, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 2009;61:14-25
  • Kruijtzer CM, Beijnen JH, Rosing H, Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 2002;20:2943-50
  • Keskitalo JE, Zolk O, Fromm MF, ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2009;86:197-203
  • Nicolle E, Boumendjel A, Macalou S, QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv Drug Deliv Rev 2009;61:34-46
  • Burger H, van Tol H, Boersma AW, Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004;104:2940-2
  • Zhou L, Schmidt K, Nelson FR, The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos 2009;37:946-55
  • Ozvegy-Laczka C, Hegedus T, Varady G, High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 2004;65:1485-95
  • Houghton PJ, Germain GS, Harwood FC, Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 2004;64:2333-7
  • Shukla S, Sauna ZE, Ambudkar SV. Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia 2008;22:445-7
  • Nakanishi T, Shiozawa K, Hassel BA, Ross DD. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 2006;108:678-84
  • Eechoute K, Sparreboom A, Burger H, Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res 2011;17:406-15
  • Tang SC, Lagas JS, Lankheet NA, Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer 2012;130:223-33
  • Lagas JS, van Waterschoot RA, Sparidans RW, Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther 2010;9:319-26
  • Breedveld P, Pluim D, Cipriani G, The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005;65:2577-82
  • de Waart DR, Vlaming ML, Kunne C, Complex pharmacokinetic behavior of ezetimibe depends on abcc2, abcc3, and abcg2. Drug Metab Dispos 2009;37:1698-702
  • Alfaras I, Perez M, Juan ME, Involvement of breast cancer resistance protein (BCRP1/ABCG2) in the bioavailability and tissue distribution of trans-resveratrol in knockout mice. J Agric Food Chem 2010;58:4523-8
  • Poller B, Iusuf D, Sparidans RW, Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab Dispos 2011;39:729-35
  • Vlaming ML, van Esch A, van de Steeg E, Impact of abcc2 [multidrug resistance-associated protein (MRP) 2], abcc3 (MRP3), and abcg2 (breast cancer resistance protein) on the oral pharmacokinetics of methotrexate and its main metabolite 7-hydroxymethotrexate. Drug Metab Dispos 2011;39:1338-44
  • Jonker JW, Buitelaar M, Wagenaar E, The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 2002;99:15649-54
  • Leggas M, Panetta JC, Zhuang Y, Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 2006;66:4802-7
  • Seamon JA, Rugg CA, Emanuel S, Role of the ABCG2 drug transporter in the resistance and oral bioavailability of a potent cyclin-dependent kinase/Aurora kinase inhibitor. Mol Cancer Ther 2006;5:2459-67
  • Zaher H, Khan AA, Palandra J, Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol Pharm 2006;3:55-61
  • Kusuhara H, Furuie H, Inano A, Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br J Pharmacol 2012;166:1793-803
  • Merino G, Alvarez AI, Pulido MM, Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos 2006;34:690-5
  • Merino G, Jonker JW, Wagenaar E, The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol Pharmacol 2005;67:1758-64
  • van Herwaarden AE, Jonker JW, Wagenaar E, The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res 2003;63:6447-52
  • van Herwaarden AE, Wagenaar E, Karnekamp B, Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis 2006;27:123-30
  • Mizuno N, Suzuki M, Kusuhara H, Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. Drug Metab Dispos 2004;32:898-901
  • Huang L, Be X, Tchaparian EH, Deletion of Abcg2 has differential effects on excretion and pharmacokinetics of probe substrates in rats. J Pharmacol Exp Ther 2012;343(2):316-24
  • Myllynen P, Kummu M, Sieppi E. ABCB1 and ABCG2 expression in the placenta and fetus: an interspecies comparison. Expert Opin Drug Metab Toxicol 2010;6:1385-98
  • Tanaka Y, Slitt AL, Leazer TM, Tissue distribution and hormonal regulation of the breast cancer resistance protein (Bcrp/Abcg2) in rats and mice. Biochem Biophys Res Commun 2005;326:181-7
  • Gutmann H, Hruz P, Zimmermann C, Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem Pharmacol 2005;70:695-9
  • Huls M, Brown CD, Windass AS, The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 2008;73:220-5
  • Reid T, Yuen A, Catolico M, Carlson RW. Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother Pharmacol 1993;33:82-4
  • Troger U, Stotzel B, Martens-Lobenhoffer J, Drug points: severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ 2002;324:1497
  • Santucci R, Leveque D, Kemmel V, Severe intoxication with methotrexate possibly associated with concomitant use of proton pump inhibitors. Anticancer Res 2010;30:963-5
  • Breedveld P, Zelcer N, Pluim D, Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res 2004;64:5804-11
  • Lagas JS, van der Kruijssen CM, van de Wetering K, Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone. Drug Metab Dispos 2009;37:129-36
  • Thyss A, Milano G, Kubar J, Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet 1986;1:256-8
  • Jonker JW, Smit JW, Brinkhuis RF, Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000;92:1651-6
  • Kuppens IE, Witteveen EO, Jewell RC, A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res 2007;13:3276-85
  • GlaxoSmithKline. Hycamtin drug label. 2011. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020981s005lbl.pdf
  • Simonson SG, Raza A, Martin PD, Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther 2004;76:167-77
  • Karlgren M, Ahlin G, Bergstrom CA, In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions. Pharm Res 2012;29:411-26
  • Xia CQ, Liu N, Miwa GT, Gan LS. Interactions of cyclosporin a with breast cancer resistance protein. Drug Metab Dispos 2007;35:576-82
  • Pawarode A, Shukla S, Minderman H, Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother Pharmacol 2007;60:179-88
  • Gupta A, Dai Y, Vethanayagam RR, Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemother Pharmacol 2006;58:374-83
  • Weiss J, Rose J, Storch CH, Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 2007;59:238-45
  • Annaert P, Ye ZW, Stieger B, Augustijns P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica 2010;40:163-76
  • Kiser JJ, Gerber JG, Predhomme JA, Drug/Drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J Acquir Immune Defic Syndr 2008;47:570-8
  • Imai Y, Nakane M, Kage K, C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002;1:611-16
  • Morisaki K, Robey RW, Ozvegy-Laczka C, Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol 2005;56:161-72
  • Kondo C, Suzuki H, Itoda M, Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 2004;21:1895-903
  • Kobayashi D, Ieiri I, Hirota T, Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 2005;33:94-101
  • Furukawa T, Wakabayashi K, Tamura A, Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res 2009;26:469-79
  • Ho RH, Choi L, Lee W, Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 2007;17:647-56
  • Lal S, Wong ZW, Sandanaraj E, Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci 2008;99:816-23
  • Yasuda SU, Zhang L, Huang SM. The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther 2008;84:417-23
  • Kurose K, Sugiyama E, Saito Y. Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 2012;27:9-54
  • Nakagawa H, Tamura A, Wakabayashi K, Ubiquitin-mediated proteasomal degradation of non-synonymous SNP variants of human ABC transporter ABCG2. Biochem J 2008;411:623-31
  • Tamura A, Watanabe M, Saito H, Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 2006;70:287-96
  • Sparreboom A, Loos WJ, Burger H, Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol Ther 2005;4:650-8
  • Cusatis G, Sparreboom A. Pharmacogenomic importance of ABCG2. Pharmacogenomics 2008;9:1005-9
  • Li J, Cusatis G, Brahmer J, Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 2007;6:432-8
  • Sparreboom A, Gelderblom H, Marsh S, Diflomotecan pharmacokinetics in relation to ABCG2 421C > A genotype. Clin Pharmacol Ther 2004;76:38-44
  • Mizuno T, Fukudo M, Terada T, Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet 2012; Epub ahead of print
  • Cusatis G, Gregorc V, Li J, Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 2006;98:1739-42
  • Hu M, To KK, Mak VW, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol 2011;7:49-62
  • Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 2009;5:703-29
  • Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C > A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 2009;10:1617-24
  • Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 2010;87:130-3
  • Bailey KM, Romaine SP, Jackson BM, Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet 2010;3:276-85
  • Tomlinson B, Hu M, Lee VW, ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 2010;87:558-62
  • Chasman DI, Giulianini F, MacFadyen J, Genetic determinants of statin-induced LDL-C reduction: the JUPITER trial. Circ Cardiovasc Genet 2012;5(2):257-64
  • Hirano M, Maeda K, Matsushima S, Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 2005;68:800-7
  • Ieiri I, Suwannakul S, Maeda K, SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2007;82:541-7
  • Liang E, Proudfoot J, Yazdanian M. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm Res 2000;17:1168-74
  • van der Heijden J, de Jong MC, Dijkmans BA, Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFalpha. Ann Rheum Dis 2004;63:138-43
  • Urquhart BL, Ware JA, Tirona RG, Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics 2008;18:439-48
  • Yamasaki Y, Ieiri I, Kusuhara H, Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther 2008;84:95-103
  • Adkison KK, Vaidya SS, Lee DY, Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci 2010;99:1046-62
  • Merino G, van Herwaarden AE, Wagenaar E, Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 2005;67:1765-71
  • Wu X, Zhang X, Zhang H, Progesterone receptor downregulates breast cancer resistance protein expression via binding to the progesterone response element in breast cancer. Cancer Sci 2012;103:959-67
  • Imai Y, Ishikawa E, Asada S, Sugimoto Y. Estrogen-mediated post transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res 2005;65:596-604
  • Zhang Y, Zhou G, Wang H, Transcriptional upregulation of breast cancer resistance protein by 17beta-estradiol in ERalpha-positive MCF-7 breast cancer cells. Oncology 2006;71:446-55
  • Wang H, Lee EW, Zhou L, Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells. Mol Pharmacol 2008;73:845-54
  • Matsuo H, Takada T, Ichida K, ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides Nucleotides Nucleic Acids 2011;30:1117-28
  • Kolz M, Johnson T, Sanna S, Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 2009;5:e1000504
  • Stark K, Reinhard W, Grassl M, Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease. PLoS One 2009;4:e7729
  • Daood M, Tsai C, Ahdab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 2008;39:211-18
  • Sisodiya SM, Martinian L, Scheffer GL, Vascular colocalization of P-glycoprotein, multidrug-resistance associated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuropathol Appl Neurobiol 2006;32:51-63
  • Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 2002;13:2059-63
  • Eisenblätter T, Hüwel S, Galla HJ. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res 2003;971:221-31
  • Aronica E, Gorter JA, Redeker S, Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 2005;46:849-57
  • Kamiie J, Ohtsuki S, Iwase R, Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 2008;25:1469-83
  • Zhang W, Mojsilovic-Petrovic J, Andrade MF, The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J 2003;17:2085-7
  • Uchida Y, Ohtsuki S, Katsukura Y, Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 2011;117:333-45
  • Cisternino S, Mercier C, Bourasset F, Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res 2004;64:3296-301
  • Poller B, Wagenaar E, Tang SC, Schinkel AH. Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm 2011;8:571-82
  • de Vries NA, Zhao J, Kroon E, P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 2007;13:6440-9
  • Oostendorp RL, Buckle T, Beijnen JH, The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs 2009;27:31-40
  • Tang SC, Lankheet NA, Poller B, P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict brain accumulation of the active sunitinib metabolite N-desethyl sunitinib. J Pharmacol Exp Ther 2012;341:164-73
  • Agarwal S, Uchida Y, Mittapalli RK, Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. Drug Metab Dispos 2012;40:1164-9
  • Polli JW, Humphreys JE, Harmon KA, The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino }methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos 2008;36:695-701
  • Lagas JS, van Waterschoot RA, van Tilburg VA, Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res 2009;15:2344-51
  • Agarwal S, Sane R, Gallardo JL, Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 2010;334:147-55
  • Marchetti S, de Vries NA, Buckle T, Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther 2008;7:2280-7
  • Kodaira H, Kusuhara H, Ushiki J, Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 2010;333:788-96
  • Wang X, Nitanda T, Shi M, Induction of cellular resistance to nucleoside reverse transcriptase inhibitors by the wild-type breast cancer resistance protein. Biochem Pharmacol 2004;68:1363-70
  • Pan G, Giri N, Elmquist WF. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos 2007;35:1165-73
  • Giri N, Shaik N, Pan G, Investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) on pharmacokinetics and central nervous system penetration of abacavir and zidovudine in the mouse. Drug Metab Dispos 2008;36:1476-84
  • Cerveny L, Pavek P, Malakova J, Lack of interactions between breast cancer resistance protein (bcrp/abcg2) and selected antiepileptic agents. Epilepsia 2006;47:461-8
  • Lazarowski A, Czornyj L, Lubienieki F, C transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia 2007;48(Suppl 5):140-9
  • Gradhand U, Kim RB. Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2). Drug Metab Rev 2008;40:317-54
  • Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011(201):299-323
  • Krajcsi P, Jani M, Toth B, Efflux transporters in the blood-brain interfaces--in vitro and in vivo methods and correlations. Expert Opin Drug Metab Toxicol 2012;8:419-31
  • Giacomini KM, Huang SM, Tweedie DJ, Membrane transporters in drug development. Nat Rev Drug Discov 2010;9:215-36
  • Guideline on the investigation of drug interactions. 2012. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf
  • Rudin CM, Liu W, Desai A, Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol 2008;26:1119-27
  • Cha PC, Mushiroda T, Zembutsu H, Single nucleotide polymorphism in ABCG2 is associated with irinotecan-induced severe myelosuppression. J Hum Genet 2009;54:572-80
  • de Jong FA, Marsh S, Mathijssen RH, ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 2004;10:5889-94
  • Han JY, Lim HS, Yoo YK, Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 2007;110:138-47
  • Kim HS, Sunwoo YE, Ryu JY, The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine. Br J Clin Pharmacol 2007;64:645-54
  • Kim KA, Joo HJ, Park JY. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur J Clin Pharmacol 2011;67:129-34
  • Adkison KK, Vaidya SS, Lee DY, The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol 2008;66:233-9
  • Marsh S, Somlo G, Li X, Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 2007;7:362-5
  • Chu AY, Guilianini F, Barratt BJ, Pharmacogenetic determinants of statin-induced reductions in C-reactive protein. Circ Cardiovasc Genet 2012;5:58-65
  • Zhang W, Yu BN, He YJ, Role of BCRP 421C > A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 2006;373:99-103
  • van Erp NP, Eechoute K, van der Veldt AA, Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 2009;27:4406-12
  • Su AI, Wiltshire T, Batalov S, A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004;101:6062-7
  • Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 2005;20:452-77
  • Yamagata T, Kusuhara H, Morishita M, Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients. Drug Metab Dispos 2007;35:1142-8
  • Vlaming ML, Pala Z, van Esch A, Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin Cancer Res 2009;15:3084-93
  • Enokizono J, Kusuhara H, Sugiyama Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 2007;72:967-75
  • Alvarez AI, Vallejo F, Barrera B, Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos 2011;39:2008-12
  • Yang Z, Zhu W, Gao S, Breast cancer resistance protein (ABCG2) determines distribution of genistein phase ii metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos 2012
  • Enokizono J, Kusuhara H, Sugiyama Y. Involvement of breast cancer resistance protein (BCRP/ABCG2) in the biliary excretion and intestinal efflux of troglitazone sulfate, the major metabolite of troglitazone with a cholestatic effect. Drug Metab Dispos 2007;35:209-14
  • Polli JW, Olson KL, Chism JP, An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino }methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 2009;37:439-42
  • Geyer J, Gavrilova O, Petzinger E. Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp- deficient knockout mice. J Vet Pharmacol Ther 2009;32:87-96
  • Chen Y, Agarwal S, Shaik NM, P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 2009;330:956-63
  • Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 2011;336:223-33
  • de Vries NA, Buckle T, Zhao J, Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs 2012;30:443-9
  • Kodaira H, Kusuhara H, Fujita T, Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 2011;339:935-44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.