249
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Crystal structure of arylamine N-acetyltransferases: insights into the mechanisms of action and substrate selectivity

, PhD, , PhD (Assistant professor) , , PhD (Professor, Head of the lab) & , PhD (Professor)
Pages 349-362 | Published online: 07 Jan 2013

Bibliography

  • Weber WW, Hein DW. N-acetylation pharmacogenetics. Pharmacol Rev 1985;37:25-79
  • Sim E, Lack N, Wang C-J, Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Toxicology 2008;254:170-83
  • Grant DM, Josephy PD, Lord HL, Salmonella typhimurium strains expressing human arylamine N-acetyltransferases: metabolism and mutagenic activation of aromatic amines. Cancer Res 1992;52:3961-4
  • Chou TC, Lipmann F. Separation of acetyl transfer enzymes in pigeon liver extract. J Biol Chem 1952;196:89-103
  • Glenn AE, Karagianni EP, Ulndreaj A, Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family. FEBS Lett 2010;584:3158-64
  • Martins M, Dairou J, Rodrigues-Lima F, Insights into the phylogeny or arylamine N-acetyltransferases in fungi. J Mol Evol 2010;71:141-52
  • Blum M, Grant DM, McBride W, Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 1990;9:193-203
  • Minchin RF. Acetylation of p-aminobenzoylglutamate, a folic acid catabolite, by recombinant human arylamine N-acetyltransferase and U937 cells. Biochem J 1995;307(Pt 1):1-3
  • Ward A, Summers MJ, Sim E. Purification of recombinant human N-acetyltransferase type 1 (NAT1) expressed in E. coli and characterization of its potential role in folate metabolism. Biochem Pharmacol 1995;49:1759-67
  • Wakefield L, Cornish V, Long H, Deletion of a xenobiotic metabolizing gene in mice affects folate metabolism. Biochem Biophys Res Commun 2007;364:556-60
  • Evans DA, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. Br Med J 1960;2:485-91
  • Hein DW, Sim E, Boukouvala S, Consensus on the Arylamine N-acetyltransferase nomenclature. Available from: http://louisville.edu/medschool/pharmacology/consensus-human-arylamine-n-acetyltransferase-gene-nomenclature/ [Last update 1 November 2010]
  • Hein DW. N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol 2009;5:353-66
  • Agúndez JAG. Polymorphisms of human N-acetyltransferases and cancer risk. Curr Drug Metab 2008;9:520-31
  • Münzner R, Mutschler E, Rummel M. Über die mikrobiologische umwandlung N-haltiger substrate. Planta Med 1967;15:97-103
  • Martins M, Rodrigues-Lima F, Dairou J, An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies. J Biol Chem 2009;284:18726-33
  • Glenn AE, Bacon CW. FDB2 encodes a member of the arylamine N-acetyltransferase family and is necessary for biotransformation of benzoxazolinones by Fusarium verticillioides. J Appl Microbiol 2009;107:657-71
  • Hasmann MJ, Seidl PH, Engelhardt G, Acetyl-coenzyme A: arylamine N-acetyltransferases in microorganisms: screening and isolation of an enzyme from Bacillus cereus. Arch Microbiol 1986;146:275-9
  • Bhakta S, Besra GS, Upton AM, Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. J Exp Med 2004;199:1191-9
  • Lack NA, Kawamura A, Fullam E, Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis. Biochem J 2009;418:369-78
  • Payton M, Auty R, Delgoda R, Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol 1999;181:1343-7
  • Pluvinage B, Dairou J, Possot OM, Cloning and molecular characterization of three arylamine N-acetyltransferase genes from Bacillus anthracis: identification of unusual enzymatic properties and their contribution to sulfamethoxazole resistance. Biochemistry 2007;46:7069-78
  • Kawamura A, Sandy J, Upton A, Structural investigation of mutant Mycobacterium smegmatis arylamine N-acetyltransferase: a model for a naturally occurring functional polymorphism in Mycobacterium tuberculosis arylamine N-acetyltransferase. Protein Expr Purif 2003;27:75-84
  • Coelho MB, Costa ERD, Vasconcellos SEG, Sequence and structural characterization of tbnat gene in isoniazid-resistant Mycobacterium tuberculosis: identification of new mutations. Mutat Res 2011;712:33-9
  • Sinclair JC, Sandy J, Delgoda R, Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol 2000;7:560-4
  • Fullam E, Westwood IM, Anderton MC, Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J Mol Biol 2008;375:178-91
  • Rodrigues-Lima F, Deloménie C, Goodfellow GH, Homology modelling and structural analysis of human arylamine N-acetyltransferase NAT1: evidence for the conservation of a cysteine protease catalytic domain and an active-site loop. Biochem J 2001;356:327-34
  • Dairou J, Flatters D, Chaffotte AF, Insight into the structure of Mesorhizobium loti arylamine N-acetyltransferase 2 (MLNAT2): a biochemical and computational study. FEBS Lett 2006;580:1780-8
  • Wu H, Dombrovsky L, Tempel W, Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases. J Biol Chem 2007;282:30189-97
  • Dupret JM, Grant DM. Site-directed mutagenesis of recombinant human arylamine N-acetyltransferase expressed in Escherichia coli. Evidence for direct involvement of Cys68 in the catalytic mechanism of polymorphic human NAT2. J Biol Chem 1992;267:7381-5
  • Watanabe M, Sofuni T, Nohmi T. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. J Biol Chem 1992;267:8429-36
  • Zang Y, Zhao S, Doll MA, Functional characterization of the A411T (L137F) and G364A (D122N) genetic polymorphisms in human N-acetyltransferase 2. Pharmacogenet Genomics 2007;17:37-45
  • Kubiak X, Pluvinage B, Li de la Sierra-Gallay I, Purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3]. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012;68:196-8
  • Deloménie C, Fouix S, Longuemaux S, Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol 2001;183:3417-27
  • Pluvinage B, de la Sierra-Gallay IL, Kubiak X, The Bacillus anthracis arylamine N-acetyltransferase ((BACAN)NAT1) that inactivates sulfamethoxazole, reveals unusual structural features compared with the other NAT isoenzymes. FEBS Lett 2011;585:3947-52
  • Walraven JM, Trent JO, Hein DW. Computational and experimental analyses of mammalian arylamine N-acetyltransferase structure and function. Drug Metab Dispos 2007;35:1001-7
  • Payton M, Gifford C, Schartau P, Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of Mycobacterium tuberculosis. Microbiology (Reading, Engl.) 2001;147:3295-302
  • Atmane N, Dairou J, Flatters D, The conserved glycine/alanine residue of the active-site loop containing the putative acetylCoA-binding motif is essential for the overall structural integrity of Mesorhizobium loti arylamine N-acetyltransferase 1. Biochem Biophys Res Commun 2007;361:256-62
  • Goodfellow GH, Dupret JM, Grant DM. Identification of amino acids imparting acceptor substrate selectivity to human arylamine acetyltransferases NAT1 and NAT2. Biochem J 2000;348(Pt 1):159-66
  • Pluvinage B, Li de la Sierra-Gallay I, Martins M, Crystallization and preliminary X-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007;63:862-4
  • Sandy J, Holton S, Fullam E, Binding of the anti-tubercular drug isoniazid to the arylamine N-acetyltransferase protein from Mycobacterium smegmatis. Protein Sci 2005;14:775-82
  • Abuhammad AM, Lowe ED, Fullam E, Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site. Protein Cell 2010;1:384-92
  • Liu F, Zhang N, Zhou X, Arylamine N-acetyltransferase aggregation and constitutive ubiquitylation. J Mol Biol 2006;361:482-92
  • Riddle B, Jencks WP. Acetyl-coenzyme A: arylamine N-acetyltransferase. Role of the acetyl-enzyme intermediate and the effects of substituents on the rate. J Biol Chem 1971;246:3250-8
  • Zhang N, Liu L, Liu F, NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity. J Mol Biol 2006;363:188-200
  • Zhang N, Walters KJ. Insights into how protein dynamics affects arylamine N-acetyltransferase catalysis. Biochem Biophys Res Commun 2009;385:395-401
  • Mushtaq A, Payton M, Sim E. The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity. J Biol Chem 2002;277:12175-81
  • Sinclair J, Sim E. A fragment consisting of the first 204 amino-terminal amino acids of human arylamine N-acetyltransferase one (NAT1) and the first transacetylation step of catalysis. Biochem Pharmacol 1997;53:11-16
  • Westwood IM, Bhakta S, Russell AJ, Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell 2010;1:82-95
  • Fullam E, Abuhammad A, Wilson DL, Analysis of β-amino alcohols as inhibitors of the potential anti-tubercular target N-acetyltransferase. Bioorg Med Chem Lett 2011;21:1185-90
  • Russell AJ, Westwood IM, Crawford MHJ, Selective small molecule inhibitors of the potential breast cancer marker, human arylamine N-acetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2. Bioorg Med Chem 2009;17:905-18
  • Sim E, Fakis G, Laurieri N, Arylamine N-acetyltransferases–from drug metabolism and pharmacogenetics to identification of novel targets for pharmacological intervention. Adv Pharmacol 2012;63:169-205
  • Andres HH, Klem AJ, Schopfer LM, On the active site of liver acetyl-CoA. Arylamine N-acetyltransferase from rapid acetylator rabbits (III/J). J Biol Chem 1988;263:7521-7
  • Sandy J, Mushtaq A, Holton SJ, Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 2005;390:115-23
  • Sandy J, Mushtaq A, Kawamura A, The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis–an enzyme which inactivates the anti-tubercular drug, isoniazid. J Mol Biol 2002;318:1071-83
  • Wang H, Vath GM, Gleason KJ, Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Biochemistry 2004;43:8234-46
  • Wang H, Liu L, Hanna PE, Catalytic mechanism of hamster arylamine N-acetyltransferase 2. Biochemistry 2005;44:11295-306
  • Zhou X, Zhang N, Liu L, Probing the catalytic potential of the hamster arylamine N-acetyltransferase 2 catalytic triad by site-directed mutagenesis of the proximal conserved residue, Tyr190. FEBS J 2009;276:6928-41
  • Sikora AL, Frankel BA, Blanchard JS. Kinetic and chemical mechanism of arylamine N-acetyltransferase from Mycobacterium tuberculosis. Biochemistry 2008;47:10781-9
  • Rodrigues-Lima F, Dupret J-M. 3D model of human arylamine N-acetyltransferase 2: structural basis of the slow acetylator phenotype of the R64Q variant and analysis of the active-site loop. Biochem Biophys Res Commun 2002;291:116-23
  • Butcher NJ, Arulpragasam A, Minchin RF. Proteasomal degradation of N-acetyltransferase 1 is prevented by acetylation of the active site cysteine: a mechanism for the slow acetylator phenotype and substrate-dependent down-regulation. J Biol Chem 2004;279:22131-7
  • Walraven JM, Trent JO, Hein DW. Structure-function analyses of single nucleotide polymorphisms in human N-acetyltransferase 1. Drug Metab Rev 2008;40:169-84
  • Rajasekaran M, Abirami S, Chen C. Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation. PLoS ONE 2011;6:e25801
  • Ramos RM, Perez JM, Baptista LA, Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance [Internet]. J Mol Model 2012;18(9):4013-24
  • Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev 2008;40:479-510
  • Butcher NJ, Tiang J, Minchin RF. Regulation of arylamine N-acetyltransferases. Curr Drug Metab 2008;9:498-504
  • Dairou J, Atmane N, Dupret J-M, Reversible inhibition of the human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 by S-nitrosothiols. Biochem Biophys Res Commun 2003;307:1059-65
  • Atmane N, Dairou J, Paul A, Redox regulation of the human xenobiotic metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1). Reversible inactivation by hydrogen peroxide. J Biol Chem 2003;278:35086-92
  • Ragunathan N, Dairou J, Pluvinage B, Identification of the xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 as a new target of cisplatin in breast cancer cells: molecular and cellular mechanisms of inhibition. Mol Pharmacol 2008;73:1761-8
  • Ragunathan N, Dairou J, Sanfins E, Cadmium alters the biotransformation of carcinogenic aromatic amines by arylamine N-acetyltransferase xenobiotic-metabolizing enzymes: molecular, cellular, and in vivo studies. Environ Health Perspect 2010;118:1685-91
  • Hein DW, Rustan TD, Ferguson RJ, Metabolic activation of aromatic and heterocyclic N-hydroxyarylamines by wild-type and mutant recombinant human NAT1 and NAT2 acetyltransferases. Arch. Toxicol 1994;68:129-33
  • Butcher NJ, Ilett KF, Minchin RF. Inactivation of human arylamine N-acetyltransferase 1 by the hydroxylamine of p-aminobenzoic acid. Biochem Pharmacol 2000;60:1829-36
  • Liu L, Wagner CR, Hanna PE. Isoform-selective inactivation of human arylamine N-acetyltransferases by reactive metabolites of carcinogenic arylamines. Chem Res Toxicol 2009;22:1962-74
  • Kawamura A, Westwood I, Wakefield L, Mouse N-acetyltransferase type 2, the homologue of human N-acetyltransferase type 1. Biochem Pharmacol 2008;75:1550-60
  • Sanfins E, Dairou J, Hussain S, Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation of arylamine N-acetyltransferase enzymes. ACS Nano 2011;5:4504-11
  • Kubiak X, Dervins-Ravault D, Pluvinage B, Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 2012;445:219-28
  • Pompeo F, Mushtaq A, Sim E. Expression and purification of the rifamycin amide synthase, RifF, an enzyme homologous to the prokaryotic arylamine N-acetyltransferases. Protein Expr Purif 2002;24:138-51
  • Takenaka S, Mulyono Sasano Y, Microbial transformation of aniline derivatives: regioselective biotransformation and detoxification of 2-phenylenediamine by Bacillus cereus strain PDa-1. J Biosci Bioeng 2006;102:21-7
  • Dundas J, Ouyang Z, Tseng J, CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 2006;34:W116-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.