306
Views
3
CrossRef citations to date
0
Altmetric
Reviews

The role of sphingolipids in drug metabolism and transport

, & , PhD
Pages 319-331 | Published online: 07 Jan 2013

Bibliography

  • Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med 2011;365:1812-23
  • Fahy E, Subramaniam S, Murphy RC, Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 2009;50(Suppl):S9-14
  • Fyrst H, Saba JD. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 2010;6:489-97
  • Cowart LA. Sphingolipids: players in the pathology of metabolic disease. Trends Endocrinol Metab 2009;20:34-42
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008;9:139-50
  • Kolter T. A view on sphingolipids and disease. Chem Phys Lipids 2011;164:590-606
  • Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:2696-708
  • Merril AH Jr, Nikolova-Karakashian M, Schmelz EM, Regulation of cytochrome P450 expression by sphingolipids. Chem Phys Lipids 1999;102:131-9
  • Gouaze-Andersson V, Yu JY, Kreitenberg AJ, Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 2007;1771:1407-17
  • Aye IL, Singh AT, Keelan JA. Transport of lipids by ABC proteins: interactions and implications for cellular toxicity, viability and function. Chem Biol Interact 2009;180:327-39
  • Ryland LK, Fox TE, Liu X, Dysregulation of sphingolipid metabolism in cancer. Cancer Biol Ther 2011;11:138-49
  • Quehenberger O, Armando AM, Brown AH, Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 2010;51:3299-305
  • Merrill AH Jr. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011;111:6387-422
  • Merrill AH Jr, Sullards MC, Allegood JC, Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 2005;36:207-24
  • Merrill AH Jr, Sandhoff K. Sphingolipids: metabolism and cell signaling. In: Vance DE, Vance JE, editors. Biochemistry of lipids, lipoproteins and membranes. Elsevier; New York: 2002. p. 373-407
  • Linn SC, Kim HS, Keane EM, Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans 2001;29:831-5
  • Han G, Gupta SD, Gable K, Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci USA 2009;106:8186-91
  • Hornemann T, Wei Y, von Eckardstein A. Is the mammalian serine palmitoyltransferase a high-molecular-mass complex? Biochem J 2007;405:157-64
  • Mandon EC, Ehses I, Rother J, Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 1992;267:11144-8
  • Pewzner-Jung Y, Ben-Dor S, Futerman AH. When do lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J Biol Chem 2006;281:25001-5
  • Teufel A, Maass T, Galle PR, Malik N. The longevity assurance homologue of yeast lag1 (Lass) gene family. Int J Mol Med 2009;23:135-40
  • Causeret C, Geeraert L, Van der Hoeven G, Further characterization of rat dihydroceramide desaturase: tissue distribution, subcellular localization, and substrate specificity. Lipids 2000;35:1117-25
  • Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004;82:27-44
  • Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011;163:694-712
  • Jenkins RW, Canals D, Idkowiak-Baldys J, Regulated secretion of acid sphingomyelinase: implications for selectivity of ceramide formation. J Biol Chem 2010;285:35706-18
  • Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 2005;21:81-103
  • Hanada K. Intracellular trafficking of ceramide by ceramide transfer protein. Proc Jpn Acad Ser B Phys Biol Sci 2010;86:426-37
  • Hanada K, Kumagai K, Tomishige N, Yamaji T. CERT-mediated trafficking of ceramide. Biochim Biophys Acta 2009;1791:684-91
  • Sprong H, Kruithof B, Leijendekker R, UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 1998;273:25880-8
  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC. Identification of a family of animal sphingomyelin synthases. EMBO J 2004;23:33-44
  • Jeckel D, Karrenbauer A, Burger KN, Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 1992;117:259-67
  • Hetz CA, Hunn M, Rojas P, Caspase-dependent initiation of apoptosis and necrosis by the fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase. J Cell Sci 2002;115(Pt. 23):4671-83
  • Cuvillier O. Sphingosine in apoptosis signaling. Biochim Biophys Acta 2002;1585:153-62
  • Johnson KR, Johnson KY, Becker KP, Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J Biol Chem 2003;278:34541-7
  • Bandhuvula P, Saba JD. Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends Mol Med 2007;13:210-17
  • Kolter T, Sandhoff K. Sphingolipid metabolism diseases. Biochim Biophys Acta 2006;1758:2057-79
  • Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 2010;285:20423-7
  • Jmoudiak M, Futerman AH. Gaucher disease: pathological mechanisms and modern management. Br J Haematol 2005;129:178-88
  • Patrick AD. Short communications: a deficiency of glucocerebrosidase in Gaucher's disease. Biochem J 1965;97:17C-8C
  • Nilsson O, Svennerholm L. Accumulation of glucosylceramide glucosylsphingosine (psychosine) in cerebrum cerebellum in infantile juvenile Gaucher disease. J Neurochem 1982;39:709-18
  • Fernandes Filho JA, Shapiro BE. Tay-Sachs disease. Arch Neurol 2004;61:466-8
  • Rendic S, Guengerich FP. Update information on drug metabolism systems-2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 2010;11:4-84
  • Nelson DR, Zeldin DC, Hoffman SM, Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004;14:1-18
  • Guengerich FP. Update information on human P450s. Drug Metab Rev 2002;34:7-15
  • Morgan ET. Regulation of cytochromes P450 during inflammation and infection. Drug Metab Rev 1997;29:1129-88
  • Renton KW, Singh G, Stebbing N. Relationship between the antiviral effects of interferons and their abilities to depress cytochrome P-450. Biochem Pharmacol 1984;33:3899-902
  • Morgan ET. Down-regulation of multiple cytochrome P450 gene products by inflammatory mediators in vivo. Independence from the hypothalamo-pituitary axis. Biochem Pharmacol 1993;45:415-19
  • Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994;77:325-8
  • Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999;39:1-17
  • Chun YJ, Lee S, Yang SA, Modulation of CYP3A4 expression by ceramide in human colon carcinoma HT-29 cells. Biochem Biophys Res Commun 2002;298:687-92
  • Carlson TJ, Billings RE. Role of nitric oxide in the cytokine mediated regulation of cytochrome P-450. Mol Pharmacol 1996;49:796-801
  • Chun YJ, Park S, Yang SA. Activation of Fas receptor modulates cytochrome P450 3A4 expression in human colon carcinoma cells. Toxicol Lett 2003;146:75-81
  • Morgan ET. Suppression of constitutive cytochrome P-450 gene expression in livers of rats undergoing an acute phase response to endotoxin. Mol Pharmacol 1989;36:699-707
  • Chen J, Nikolova-Karakashian M, Merrill AH Jr, Morgan ET. Regulation of cytochrome P450 2C11 (CYP2C11) gene expression by interleukin-1, sphingomyelin hydrolysis, and ceramides in rat hepatocytes. J Biol Chem 1995;270:25233-8
  • Nikolova-Karakashian M, Morgan ET, Alexander C, Bimodal regulation of ceramidase by interleukin-1beta. Implications for the regulation of cytochrome p450 2C11. J Biol Chem 1997;272:18718-24
  • Lu CY, Li CC, Liu KL, Docosahexaenoic acid down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes via the sphingomyelinase/ceramide pathway. J Nutr Biochem 2010;21:338-44
  • Szakacs G, Varadi A, Ozvegy-Laczka C, The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today 2008;13:379-93
  • Davidson AL, Dassa E, Orelle C, Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008;72:317-64
  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009;3:281-90
  • Senior AE, al-Shawi MK, Urbatsch IL. The catalytic cycle of P-glycoprotein. FEBS Lett 1995;377:285-9
  • Leslie E, Deeley R, Cole S. Multidrug resistance proteins: role of P glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defence. Toxicol Appl Pharmacol 2005;204:216-37
  • Sarkadi B, Homolya L, Szakacs G, Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006;86:1179-236
  • Kool M, de-Haas M, Scheffer G, Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 1997;57:3537-47
  • Hollo Z, Homolya L, Hegedus T, Parallel functional and immunological detection of human multidrug resistance proteins, P-glycoprotein and MRP1. Anticancer Res 1998;18:2981-7
  • Glavinas H, Krajcsi P, Cserepes J, The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 2004;1:27-42
  • Quazi F, Molday RS. Lipid transport by mammalian ABC proteins. Essays Biochem 2011;50:265-90
  • Sietsma H, Veldman R, Kok J. The involvement of sphingolipids in multidrug resistance. J Membr Biol 2001;181:153-62
  • De Rosa MF, Sillence D, Ackerley C, Lingwood C. Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis. J Biol Chem 2004;279:7867-76
  • Turzanski J, Grundy M, Shang S, P-glycoprotein is implicated in the inhibition of ceramide-induced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp Hematol 2005;33:62-72
  • Eckford P, Sharom F. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem J 2005;389:517-26
  • Van Helvoort A, Giudici M, Thielemans M, Van Meer G. Transport of sphingomyelin to the cell surface is inhibited by brefeldin A and in mitosis, where C6-NBD-sphingomyelin is translocated across the plasma membrane by a multidrug transporter activity. J Cell Sci 1997;110:75-83
  • Van Helvoort A, Smith A, Sprong H, MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996;87:507-17
  • Raggers RJ, van Helvoort A, Evers R, van Meer G. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 1999;112(Pt 3):415-22
  • Akiyama M, Sugiyama-Nakagiri Y, Sakai K, Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 2005;115:1777-84
  • Sakai H, Tanaka Y, Tanaka M, ABCA2 deficiency results in abnormal sphingolipid metabolism in mouse brain. J Biol Chem 2007;282:19692-9
  • Kobayashi A, Takanezawa Y, Hirata T, Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res 2006;47:1791-802
  • Alvarez SE, Milstien S, Spiegel S. Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 2007;18:300-7
  • Tanfin Z, Serrano-Sanchez M, Leiber D. ATP-binding cassette ABCC1 is involved in the release of sphingosine 1-phosphate from rat uterine leiomyoma ELT3 cells and late pregnant rat myometrium. Cell Signal 2011;23:1997-2004
  • Mitra P, Oskeritzian C, Payne S, Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 2006;103:16394-9
  • Argraves KM, Argraves WS. HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 2007;48:2325-33
  • Kobayashi N, Kobayashi N, Yamaguchi A, Nishi T. Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem 2009;284:21192-200
  • Sato K, Malchinkhuu E, Horiuchi Y, Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocyte. J Neurochem 2007;103:2610-19
  • Boujaoude LC, Bradshaw-Wilder C, Mao C, Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem 2001;276:35258-64
  • Kielar D, Kaminski WE, Liebisch G, Adenosine triphosphate binding cassette (ABC) transporters are expressed and regulated during terminal keratinocyte differentiation: a potential role for ABCA7 in epidermal lipid reorganization. J Invest Dermatol 2003;121:465-74
  • Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther 2006;109:137-61
  • Sugawara T, Kinoshita M, Ohnishi M, Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 2004;68:2541-6
  • Lavie Y, Cao H, Bursten SL, Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 1996;271:19530-6
  • Kok JW, Veldman RJ, Klappe K, Differential expression of sphingolipids in MRP1 overexpressing HT29 cells. Int J Cancer 2000;87:172-8
  • Wojtal KA, de Vries E, Hoekstra D, van Ijzendoorn SC. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol Biol Cell 2006;17:3638-50
  • Veldman RJ, Sietsma H, Klappe K, Inhibition of glycoprotein activity and chemosensitization of multidrug-resistant ovarian carcinoma 2780AD cells by hexanoylglucosylceramide. Biochem Biophys Res Commun 1999;266:492-6
  • Pilorget A, Demeule M, Barakat S, Modulation of P-glycoprotein function by sphingosine kinase-1 in brain endothelial cells. J Neurochem 2007;100:1203-10
  • Ghering A, Davidson W. Ceramide structural features required to stimulate ABCA1-mediated cholesterol efflux to apoliprotein A-I. J Lipid Res 2006;47:2781-8
  • Witting SR, Maiorano JN, Davidson WS. Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP binding cassette transporter A1. J Biol Chem 2003;278:40121-7
  • Glaros EN, Kim WS, Quinn CM, Glycosphingolipid accumulation inhibits cholesterol efflux via the ABCA1/apolipoprotein A-I pathway: 1-phenyl-2-decanoylamino-3-morpholino-1-propanol is a novel cholesterol efflux accelerator. J Biol Chem 2005;280:24515-23
  • Wong ML, Xie B, Beatini N, Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA 2000;97:8681-6
  • Jiang XC, Paultre F, Pearson TA, Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 2000;20:2614-18
  • Haus JM, Kashyap SR, Kasumov T, Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009;58:337-43
  • Spijkers LJ, van den Akker RF, Janssen BJ, Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS ONE 2011;6:e21817
  • Park TS, Hu Y, Noh HL, Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res 2008;49:2101-12
  • Ségui B, Andrieu-Abadie N, Jaffrézou JP, Sphingolipids as modulators of cancer cell death: potential therapeutic targets. Biochim Biophys Acta 2006;1758:2104-20
  • Furuya H, Shimizu Y, Kawamori T. Sphingolipids in cancer. Cancer Metastasis Rev 2011;30:567-76
  • Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009;158:982-93
  • Holland WL, Bikman BT, Wang LP, Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 2011;121:1858-70
  • Meyer SG, de Groot H. Cycloserine and threo-dihydrosphingosine inhibit TNF-alpha-induced cytotoxicity: evidence for the importance of de novo ceramide synthesis in TNF-alpha signaling. Biochim Biophys Acta 2003;1643:1-4
  • Chang ZQ, Lee SY, Kim HJ, Endotoxin activates de novo sphingolipid biosynthesis via nuclear factor kappa B-mediated upregulation of Sptlc2. Prostaglandins Other Lipid Mediat 2011;94:44-52
  • Pettus BJ, Bielawska A, Spiegel S, Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J Biol Chem 2003;278:38206-13
  • Schütze S, Potthoff K, Machleidt T, TNF activates NF-kB by phosphatidylcholine-specific phospholipase C-induced ‘acidic' sphingomyelin breakdown. Cell 1992;71:765-76
  • Pettus BJ, Bielawski J, Porcelli AM, The sphingosine kinase 1/sphingosine-1 phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. FASEB J 2003;17:1411-21
  • Zhao S, Yang YN, Song JG. Ceramide induces caspase-dependent and -independent apoptosis in A-431 cells. J Cell Physiol 2004;199:47-56
  • Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993;259:1769-71
  • Milstien S, Spiegel S. Targeting sphingosine-1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell 2006;9:148-50
  • Granado MH, Gangoiti P, Ouro A, Ceramide 1-phosphate (C1P) promotes cell migration: involvement of a specific C1P receptor. Cell Signal 2009;21:405-12
  • Gómez-Muñoz A. Ceramide-1-phosphate: a novel regulator of cell activation. FEBS Lett 2004;562:5-10
  • Nagahashi M, Ramachandran S, Kim EY, Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 2012;72:726-35
  • Modrak DE, Gold DV, Goldenberg DM. Sphingolipid targets in cancer therapy. Mol Cancer Ther 2006;5:200-8
  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994;180:525-35
  • Saad AF, Meacham WD, Bai A, The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy. Cancer Biol Ther 2007;6:1455-60
  • Mahdy AE, Cheng JC, Li J, Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol Ther 2009;17:430-8
  • Chmura SJ, Nodzenski E, Beckett MA, Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 1997;57:1270-5
  • Liu X, Cheng JC, Turner LS, Acid ceramidase upregulation in prostate cancer: role in tumor development and implications for therapy. Expert Opin Ther Targets 2009;13:1449-58
  • Alexander S, Alexander H. Lead genetic studies in Dictyostelium discoideum and translational studies in human cells demonstrate that sphingolipids are key regulators of sensitivity to cisplatin and other anticancer drugs. Semin Cell Dev Biol 2011;22:97-104
  • Akao Y, Banno Y, Nakagawa Y, High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation. Biochem Biophys Res Commun 2006;342:1284-90
  • Kawamori T, Kaneshiro T, Okumura M, Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 2009;23:405-14
  • Kohno M, Momoi M, Oo ML, Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol 2006;26:7211-23
  • Oskouian B, Sooriyakumaran P, Borowsky AD, Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci USA 2006;103:17384-9
  • Birklé S, Zeng G, Gao L, Role of tumor-associated gangliosides in cancer progression. Biochimie 2003;85:455-63
  • Gouazé V, Yu JY, Bleicher RJ, Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 2004;3:633-9
  • Chumanevich AA, Poudyal D, Cui X, Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. Carcinogenesis 2010;31:1787-93
  • Liu YY, Han TY, Yu JY, Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J Lipid Res 2004;45:933-40
  • Antoon JW, Liu J, Ponnapakkam AP, Novel D-erythro N-octanoyl sphingosine analogs as chemo- and endocrine-resistant breast cancer therapeutics. Cancer Chemother Pharmacol 2010;65:1191-5
  • Antoon JW, Liu J, Gestaut MM, Design, synthesis, and biological activity of a family of novel ceramide analogues in chemoresistant breast cancer cells. J Med Chem 2009;52:5748-52
  • Gouazé-Andersson V, Flowers M, Karimi R, Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide. Prostate 2011;71:1064-73
  • Holland WL, Brozinick JT, Wang LP, Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007;5:167-9
  • Bijl N, Sokolović M, Vrins C, Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice. Hepatology 2009;50:1431-41
  • Merrill AH Jr, Stokes TH, Momin A, Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 2009;50(Suppl):S97-102
  • Merrill AH Jr, Wang MD, Park M, Sullards MC. (Glyco)sphingolipidology: an amazing challenge and opportunity for systems biology. Trends Biochem Sci 2007;32:457-68
  • Albouz S, Hauw JJ, Berwald-Netter Y, Tricyclic antidepressants induce sphingomyelinase deficiency in fibroblast and neuroblastoma cell cultures. Biomedicine 1981;35:218-20
  • Hurwitz R, Ferlinz K, Sandhoff K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 1994;375:447-50
  • Kölzer M, Werth N, Sandhoff K. Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett 2004;559:96-8
  • Wang H, Maurer BJ, Liu YY, N-(4-Hydroxyphenyl)retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing. Mol Cancer Ther 2008;7:2967-76
  • Schiffmann S, Sandner J, Schmidt R, The selective COX-2 inhibitor celecoxib modulates sphingolipid synthesis. J Lipid Res 2009;50:32-40
  • Schiffmann S, Ziebell S, Sandner J, Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochem Pharmacol 2010;80:1632-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.