261
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Cytochrome P450 and ischemic heart disease: current concepts and future directions

, PhD (Lecturer) & , PhD FRCP FRACP (Professor)

Bibliography

  • Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2197-223
  • Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 2011;123:e18-e209
  • Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation 2010;121:1768-77
  • Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 2007;115:949-52
  • Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011;30:11-21
  • Melander O, Newton-Cheh C, Almgren P, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA 2009;302:49-57
  • Sue Masters B, Marohnic CC. Cytochromes P450–a family of proteins and scientists-understanding their relationships. Drug Metab Rev 2006;38:209-25
  • Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 2002;3:561-97
  • Delozier TC, Kissling GE, Coulter SJ, et al. Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab Dispos 2007;35:682-8
  • Zhao X, Imig JD. Kidney CYP450 enzymes: biological actions beyond drug metabolism. Curr Drug Metab 2003;4:73-84
  • Zordoky BN, El-Kadi AO. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 2010;125:446-63
  • Sato M, Yokoyama U, Fujita T, et al. The roles of cytochrome p450 in ischemic heart disease. Curr Drug Metab 2011;12:526-32
  • Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481-8
  • Hasemann CA, Kurumbail RG, Boddupalli SS, et al. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 1995;3:41-62
  • Myasoedova KN. New findings in studies of cytochromes P450. Biochemistry Biokhimiia 2008;73:965-9
  • Pavek P, Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metab 2008;9:129-43
  • Stegeman JJ, Woodin BR, Klotz AV, et al. Cytochrome P-450 and monooxygenase activity in cardiac microsomes from the fish Stenotomus chrysops. Mol Pharmacol 1982;21:517-26
  • Nishimura M, Yaguti H, Yoshitsugu H, et al. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi 2003;123:369-75
  • Wu S, Chen W, Murphy E, et al. Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J Biol Chem 1997;272:12551-9
  • Bieche I, Narjoz C, Asselah T, et al. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 2007;17:731-42
  • Thum T, Borlak J. Gene expression in distinct regions of the heart. Lancet 2000;355:979-83
  • Minamiyama Y, Takemura S, Akiyama T, et al. Isoforms of cytochrome P450 on organic nitrate-derived nitric oxide release in human heart vessels. FEBS Lett 1999;452:165-9
  • Choudhary D, Jansson I, Schenkman JB, et al. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys 2003;414:91-100
  • Karlgren M, Backlund M, Johansson I, et al. Characterization and tissue distribution of a novel human cytochrome P450-CYP2U1. Biochem Biophys Res Commun 2004;315:679-85
  • Elbekai RH, El-Kadi AO. Cytochrome P450 enzymes: central players in cardiovascular health and disease. Pharmacol Ther 2006;112:564-87
  • Bauersachs J, Christ M, Ertl G, et al. Cytochrome P450 2C expression and EDHF-mediated relaxation in porcine coronary arteries is increased by cortisol. Cardiovasc Res 2002;54:669-75
  • Yu Z, Huse LM, Adler P, et al. Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney. Mol Pharmacol 2000;57:1011-20
  • Young MJ, Clyne CD, Cole TJ, et al. Cardiac steroidogenesis in the normal and failing heart. J Clin Endocrinol Metab 2001;86:5121-6
  • Oyekan AO, McAward K, Conetta J, et al. Endothelin-1 and CYP450 arachidonate metabolites interact to promote tissue injury in DOCA-salt hypertension. Am J Physiol 1999;276:R766-75
  • Wu S, Moomaw CR, Tomer KB, et al. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 1996;271:3460-8
  • Fleming I, Michaelis UR, Bredenkotter D, et al. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 2001;88:44-51
  • Knights KM, Rowland A, Miners JO. Renal drug metabolism in humans: The potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 2013;76(4):587-602
  • Baker JR, Satarug S, Reilly PE, et al. Relationships between non-occupational cadmium exposure and expression of nine cytochrome P450 forms in human liver and kidney cortex samples. Biochem Pharmacol 2001;62:713-21
  • Amet Y, Berthou F, Fournier G, et al. Cytochrome P450 4A and 2E1 expression in human kidney microsomes. Biochem Pharmacol 1997;53:765-71
  • Baker JR, Edwards RJ, Lasker JM, et al. Renal and hepatic accumulation of cadmium and lead in the expression of CYP4F2 and CYP2E1. Toxicol Lett 2005;159:182-91
  • Lasker JM, Chen WB, Wolf I, et al. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11. J Biol Chem 2000;275:4118-26
  • Enayetallah AE, French RA, Thibodeau MS, et al. Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. J Histochem Cytochem 2004;52:447-54
  • Haehner BD, Gorski JC, Vandenbranden M, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol 1996;50:52-9
  • Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002;360:1155-62
  • Fleming I. Cytochrome p450 and vascular homeostasis. Circ Res 2001;89:753-62
  • Fleming I. Vascular cytochrome p450 enzymes: physiology and pathophysiology. Trends Cardiovasc Med 2008;18:20-5
  • Kroetz DL, Zeldin DC. Cytochrome P450 pathways of arachidonic acid metabolism. Curr Opin Lipidol 2002;13:273-83
  • Jenkins CM, Cedars A, Gross RW. Eicosanoid signalling pathways in the heart. Cardiovasc Res 2009;82:240-9
  • Capdevila JH, Falck JR, Harris RC. Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 2000;41:163-81
  • Deng Y, Theken KN, Lee CR. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J Mol Cell Cardiol 2010;48:331-41
  • Fleming I. Cytochrome P450 epoxygenases as EDHF synthase(s). Pharmacol Res 2004;49:525-33
  • Hermann M, Hellermann JP, Quitzau K, et al. CYP4A11 polymorphism correlates with coronary endothelial dysfunction in patients with coronary artery disease–the ENCORE Trials. Atherosclerosis 2009;207:476-9
  • Spiecker M, Liao JK. Vascular protective effects of cytochrome p450 epoxygenase-derived eicosanoids. Arch Biochem Biophys 2005;433:413-20
  • Campbell WB, Gebremedhin D, Pratt PF, et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996;78:415-23
  • Graber MN, Alfonso A, Gill DL. Recovery of Ca2+ pools and growth in Ca2+ pool-depleted cells is mediated by specific epoxyeicosatrienoic acids derived from arachidonic acid. J Biol Chem 1997;272:29546-53
  • Graier WF, Simecek S, Sturek M. Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol 1995;482(Pt 2):259-74
  • Harder DR, Lange AR, Gebremedhin D, et al. Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. J Vasc Res 1997;34:237-43
  • Williams JM, Sarkis A, Lopez B, et al. Elevations in renal interstitial hydrostatic pressure and 20-hydroxyeicosatetraenoic acid contribute to pressure natriuresis. Hypertension 2007;49:687-94
  • Beyer AM, Gutterman DD. Regulation of the human coronary microcirculation. J Mol Cell Cardiol 2012;52:814-21
  • Chilian WM, Dellsperger KC, Layne SM, et al. Effects of atherosclerosis on the coronary microcirculation. Am J Physiol 1990;258:H529-39
  • Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol 2001;12:383-9
  • Conway DE, Sakurai Y, Weiss D, et al. Expression of CYP1A1 and CYP1B1 in human endothelial cells: regulation by fluid shear stress. Cardiovasc Res 2009;81:669-77
  • Fisslthaler B, Hinsch N, Chataigneau T, et al. Nifedipine increases cytochrome P4502C expression and endothelium-derived hyperpolarizing factor-mediated responses in coronary arteries. Hypertension 2000;36:270-5
  • Weintraub NL, Fang X, Kaduce TL, et al. Potentiation of endothelium-dependent relaxation by epoxyeicosatrienoic acids. Circ Res 1997;81:258-67
  • Hecker M, Bara AT, Bauersachs J, et al. Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol 1994;481(Pt 2):407-14
  • Miura H, Gutterman DD. Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2+-activated K+ channels. Circ Res 1998;83:501-7
  • Bauersachs J, Hecker M, Busse R. Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation. Br J Pharmacol 1994;113:1548-53
  • Oltman CL, Weintraub NL, VanRollins M, et al. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res 1998;83:932-9
  • Carroll MA, Balazy M, Margiotta P, et al. Cytochrome P-450-dependent HETEs: profile of biological activity and stimulation by vasoactive peptides. Am J Physiol 1996;271:R863-9
  • Hercule HC, Oyekan AO. Cytochrome P450 omega/omega-1 hydroxylase-derived eicosanoids contribute to endothelin(A) and endothelin(B) receptor-mediated vasoconstriction to endothelin-1 in the rat preglomerular arteriole. J Pharmacol Exp Ther 2000;292:1153-60
  • MaassenVanDenBrink A, de Vries R, Saxena PR, et al. Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. Cardiovasc Res 1999;44:407-15
  • Teerlink JR, Breu V, Sprecher U, et al. Potent vasoconstriction mediated by endothelin ETB receptors in canine coronary arteries. Circ Res 1994;74:105-14
  • Schwartzman M, Ferreri NR, Carroll MA, et al. Renal cytochrome P450-related arachidonate metabolite inhibits (Na+ + K+)ATPase. Nature 1985;314:620-2
  • Nowicki S, Chen SL, Aizman O, et al. 20-Hydroxyeicosa-tetraenoic acid (20 HETE) activates protein kinase C. Role in regulation of rat renal Na+,K+-ATPase. J Clin Invest 1997;99:1224-30
  • Randriamboavonjy V, Kiss L, Falck JR, et al. The synthesis of 20-HETE in small porcine coronary arteries antagonizes EDHF-mediated relaxation. Cardiovasc Res 2005;65:487-94
  • Stadler J, Trockfeld J, Schmalix WA, et al. Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci U S A 1994;91:3559-63
  • Nishikawa Y, Stepp DW, Chilian WM. In vivo location and mechanism of EDHF-mediated vasodilation in canine coronary microcirculation. Am J Physiol 1999;277:H1252-9
  • Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004;109:III27-32
  • Nakashima Y, Kawashima T, Nandate H, et al. Sustained-release nifedipine (nifedipine-L) suppresses plasma thromboxane B2 and 6-keto prostaglandin F1 alpha in both young male smokers and nonsmokers. Am Heart J 1990;119:1267-73
  • Phillips DI, Syddall HE, Cooper C, et al. Association of adult height and leg length with fasting plasma cortisol concentrations: evidence for an effect of normal variation in adrenocortical activity on growth. Am J Hum Biol 2008;20:712-15
  • Ferguson SS, Chen Y, LeCluyse EL, et al. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha. Mol Pharmacol 2005;68:747-57
  • Gerbal-Chaloin S, Daujat M, Pascussi JM, et al. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J Biol Chem 2002;277:209-17
  • Holvoet P, Harris TB, Tracy RP, et al. Association of high coronary heart disease risk status with circulating oxidized LDL in the well-functioning elderly: findings from the Health, Aging, and Body Composition study. Arterioscler Thromb Vasc Biol 2003;23:1444-8
  • Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487-94
  • Thum T, Borlak J. Mechanistic role of cytochrome P450 monooxygenases in oxidized low-density lipoprotein-induced vascular injury: therapy through LOX-1 receptor antagonism? Circ Res 2004;94:e1-13
  • Quyyumi AA, Dakak N, Andrews NP, et al. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 1995;92:320-6
  • Lamping KG, Wess J, Cui Y, et al. Muscarinic (M) receptors in coronary circulation: gene-targeted mice define the role of M2 and M3 receptors in response to acetylcholine. Arterioscler Thromb Vasc Biol 2004;24:1253-8
  • Ren LM, Nakane T, Chiba S. Muscarinic receptor subtypes mediating vasodilation and vasoconstriction in isolated, perfused simian coronary arteries. J Cardiovasc Pharmacol 1993;22:841-6
  • Gainer JV, Bellamine A, Dawson EP, et al. Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension. Circulation 2005;111:63-9
  • Theken KN, Schuck RN, Edin ML, et al. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease. Atherosclerosis 2012;222:530-6
  • O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013;127:529-55
  • Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 2005;14:170-5
  • Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357:1121-35
  • Suzuki S, Oguro A, Osada-Oka M, et al. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J Pharmacol Sci 2008;108:79-88
  • Motoki A, Merkel MJ, Packwood WH, et al. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. Am J Physiol Heart and Circ Physiol 2008;295:H2128-34
  • Nithipatikom K, Moore JM, Isbell MA, et al. Epoxyeicosatrienoic acids in cardioprotection: ischemic versus reperfusion injury. Am J Physiol Heart and Circ Physiol 2006;291:H537-42
  • Gross GJ, Hsu A, Falck JR, et al. Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. J Mol Cell Cardiol 2007;42:687-91
  • Seubert JM, Sinal CJ, Graves J, et al. Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ Res 2006;99:442-50
  • Moffat MP, Ward CA, Bend JR, et al. Effects of epoxyeicosatrienoic acids on isolated hearts and ventricular myocytes. Am J Physiol 1993;264:H1154-60
  • Rastaldo R, Paolocci N, Chiribiri A, et al. Cytochrome P-450 metabolite of arachidonic acid mediates bradykinin-induced negative inotropic effect. Am J Physiol Heart Circ Physiol 2001;280:H2823-32
  • Moran JH, Weise R, Schnellmann RG, et al. Cytotoxicity of linoleic acid diols to renal proximal tubular cells. Toxicol Appl Pharmacol 1997;146:53-9
  • Siegfried MR, Aoki N, Lefer AM, et al. Direct cardiovascular actions of two metabolites of linoleic acid. Life Sci 1990;46:427-33
  • Sugiyama S, Hayakawa M, Nagai S, et al. Leukotoxin, 9, 10-epoxy-12-octadecenoate, causes cardiac failure in dogs. Life Sci 1987;40:225-31
  • Ma YH, Gebremedhin D, Schwartzman ML, et al. 20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries. Circ Res 1993;72:126-36
  • Nithipatikom K, Gross ER, Endsley MP, et al. Inhibition of cytochrome P450omega-hydroxylase: a novel endogenous cardioprotective pathway. Circ Res 2004;95:e65-71
  • Nithipatikom K, DiCamelli RF, Kohler S, et al. Determination of cytochrome P450 metabolites of arachidonic acid in coronary venous plasma during ischemia and reperfusion in dogs. Anal Biochem 2001;292:115-24
  • Granville DJ, Tashakkor B, Takeuchi C, et al. Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors. Proc Natl Acad Sci U S A 2004;101:1321-6
  • Hunter AL, Bai N, Laher I, et al. Cytochrome p450 2C inhibition reduces post-ischemic vascular dysfunction. Vascul Pharmacol 2005;43:213-19
  • Seubert J, Yang B, Bradbury JA, et al. Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circ Res 2004;95:506-14
  • Gross GJ, Nithipatikom K. Soluble epoxide hydrolase: a new target for cardioprotection. Curr Opin Investig Drugs 2009;10:253-8
  • Gross GJ, Gauthier KM, Moore J, et al. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am J Physiol Heart Circ Physiol 2008;294:H2838-44
  • Chaudhary KR, Abukhashim M, Hwang SH, et al. Inhibition of soluble epoxide hydrolase by trans-4- [4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J Cardiovasc Pharmacol 2010;55:67-73
  • Batchu SN, Lee SB, Qadhi RS, et al. Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analogue towards ischaemia reperfusion injury. Br J Pharmacol 2011;162:897-907
  • Lv X, Wan J, Yang J, et al. Cytochrome P450 omega-hydroxylase inhibition reduces cardiomyocyte apoptosis via activation of ERK1/2 signaling in rat myocardial ischemia-reperfusion. Eur J Pharmacol 2008;596:118-26
  • Edin ML, Wang Z, Bradbury JA, et al. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart. FASEB J 2011;25:3436-47
  • Strauer BE. Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve. Am J Cardiol 1979;44:730-40
  • Muthalif MM, Karzoun NA, Gaber L, et al. Angiotensin II-induced hypertension: contribution of Ras GTPase/Mitogen-activated protein kinase and cytochrome P450 metabolites. Hypertension 2000;36:604-9
  • Makita K, Takahashi K, Karara A, et al. Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J Clin Invest 1994;94:2414-20
  • Jennings BL, Sahan-Firat S, Estes AM, et al. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology. Hypertension 2010;56:667-74
  • Makita K, Falck JR, Capdevila JH. Cytochrome P450, the arachidonic acid cascade, and hypertension: new vistas for an old enzyme system. FASEB J 1996;10:1456-63
  • Lee CR, Imig JD, Edin ML, et al. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. FASEB J 2010;24:3770-81
  • Singh H, Cheng J, Deng H, et al. Vascular cytochrome P450 4A expression and 20-hydroxyeicosatetraenoic acid synthesis contribute to endothelial dysfunction in androgen-induced hypertension. Hypertension 2007;50:123-9
  • Dreisbach AW, Japa S, Sigel A, et al. The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am J Hypertens 2005;18:1276-81
  • King LM, Gainer JV, David GL, et al. Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension. Pharmacogenet Genomics 2005;15:7-13
  • Mayer B, Lieb W, Gotz A, et al. Association of a functional polymorphism in the CYP4A11 gene with systolic blood pressure in survivors of myocardial infarction. J Hypertens 2006;24:1965-70
  • Mayer B, Lieb W, Gotz A, et al. Association of the T8590C polymorphism of CYP4A11 with hypertension in the MONICA Augsburg echocardiographic substudy. Hypertension 2005;46:766-71
  • Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 2007;93:903-7
  • Thum T, Borlak J. Testosterone, cytochrome P450, and cardiac hypertrophy. FASEB J 2002;16:1537-49
  • Miners JO, Smith PA, Sorich MJ, et al. Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches. Annu Rev Pharmacol Toxicol 2004;44:1-25
  • Kirchheiner J, Seeringer A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007;1770:489-94
  • Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 2007;76:391-6
  • Daly AK, Day CP, Aithal GP. CYP2C9 polymorphism and warfarin dose requirements. Br J Clin Pharmacol 2002;53:408-9
  • Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet 2000;356:1667-71
  • Ma TK, Lam YY, Tan VP, et al. Impact of genetic and acquired alteration in cytochrome P450 system on pharmacologic and clinical response to clopidogrel. Pharmacol Ther 2010;125:249-59
  • Shuldiner AR, O’Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009;302:849-57
  • Takahashi H, Kashima T, Nomizo Y, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998;63:519-28
  • Sorich MJ, Polasek TM, Wiese MD. Challenges and limitations in the interpretation of systematic reviews: making sense of clopidogrel and CYP2C19 pharmacogenetics. Clin Pharmacol Ther 2013;94:376-82
  • Scott SA, Sangkuhl K, Gardner EE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 2011;90:328-32
  • Flockhart DA, Tanus-Santos JE. Implications of cytochrome P450 interactions when prescribing medication for hypertension. Arch Intern Med 2002;162:405-12
  • Scheen AJ. Cytochrome P450-mediated cardiovascular drug interactions. Expert Opin Drug Metab Toxicol 2011;7:1065-82
  • Cheng JW, Frishman WH, Aronow WS. Updates on cytochrome p450-mediated cardiovascular drug interactions. Dis Mon 2010;56:163-79
  • Juurlink DN, Gomes T, Ko DT, et al. A population-based study of the drug interaction between proton pump inhibitors and clopidogrel. CMAJ 2009;180:713-8
  • Siller-Matula JM, Spiel AO, Lang IM, et al. Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel. Am Heart J 2009;157:148 e1-5
  • Bhatt DL, Cryer BL, Contant CF, et al. Clopidogrel with or without omeprazole in coronary artery disease. N Engl J Med 2010;363:1909-17
  • Tantry US, Kereiakes DJ, Gurbel PA. Clopidogrel and proton pump inhibitors: influence of pharmacological interactions on clinical outcomes and mechanistic explanations. JACC Cardiovasc Interv 2011;4:365-80
  • Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004;94:1140-6
  • Roten L, Schoenenberger RA, Krahenbuhl S, et al. Rhabdomyolysis in association with simvastatin and amiodarone. Ann Pharmacother 2004;38:978-81
  • Bellosta S, Paoletti R, Corsini A. Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation 2004;109:III50-7
  • Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Eur Heart J 2012;33:2551-67
  • Yasar U, Bennet AM, Eliasson E, et al. Allelic variants of cytochromes P450 2C modify the risk for acute myocardial infarction. Pharmacogenetics 2003;13:715-20
  • Rodenburg EM, Visser LE, Danser AH, et al. Genetic variance in CYP2C8 and increased risk of myocardial infarction. Pharmacogenet Genomics 2010;20:426-34
  • Funk M, Endler G, Freitag R, et al. CYP2C9*2 and CYP2C9*3 alleles confer a lower risk for myocardial infarction. Clin Chem 2004;50:2395-8
  • Marciante KD, Totah RA, Heckbert SR, et al. Common variation in cytochrome P450 epoxygenase genes and the risk of incident nonfatal myocardial infarction and ischemic stroke. Pharmacogenet Genomics 2008;18:535-43
  • Liu PY, Li YH, Chao TH, et al. Synergistic effect of cytochrome P450 epoxygenase CYP2J2*7 polymorphism with smoking on the onset of premature myocardial infarction. Atherosclerosis 2007;195:199-206
  • Jie Z, Hong K, Jianhong T, et al. Haplotype analysis of the CYP2J2 gene associated with myocardial infarction in a Chinese Han population. Cell Biochem Funct 2010;28:435-9
  • Cornelis MC, El-Sohemy A, Kabagambe EK, et al. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006;295:1135-41
  • Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction. J Med Genet 2004;41:758-62
  • Fu Z, Nakayama T, Sato N, et al. A haplotype of the CYP4F2 gene associated with myocardial infarction in Japanese men. Mol Genet Metab 2009;96:145-7
  • Xie X, Ma YT, Fu ZY, et al. Association of polymorphisms of PTGS2 and CYP8A1 with myocardial infarction. Clin Chem Lab Med 2009;47:347-52
  • Xiang X, Ma YT, Fu ZY, et al. Haplotype analysis of the CYP8A1 gene associated with myocardial infarction. Clin Appl Thromb Hemost 2009;15:574-80
  • Haschke-Becher E, Kirchheiner J, Trummer O, et al. Impact of CYP2C8 and 2C9 polymorphisms on coronary artery disease and myocardial infarction in the LURIC cohort. Pharmacogenomics 2010;11:1359-65
  • Visser LE, van Schaik RH, Jan Danser AH, et al. The risk of myocardial infarction in patients with reduced activity of cytochrome P450 2C9. Pharmacogenet Genomics 2007;17:473-9
  • Kaur-Knudsen D, Bojesen SE, Nordestgaard BG. Common polymorphisms in CYP2C9, subclinical atherosclerosis and risk of ischemic vascular disease in 52,000 individuals. Pharmacogenomics J 2009;9:327-32
  • Hoffmann MM, Bugert P, Seelhorst U, et al. The -50G>T polymorphism in the promoter of the CYP2J2 gene in coronary heart disease: the Ludwigshafen Risk and Cardiovascular Health study. Clin Chem 2007;53:539-40
  • Borgel J, Bulut D, Hanefeld C, et al. The CYP2J2 G-50T polymorphism and myocardial infarction in patients with cardiovascular risk profile. BMC Cardiovasc Disord 2008;8:41
  • Kaur-Knudsen D, Nordestgaard BG, Tybjaerg-Hansen A, et al. CYP1B1 genotype and risk of cardiovascular disease, pulmonary disease, and cancer in 50,000 individuals. Pharmacogenet Genomics 2009;19:685-94
  • Fu Z, Nakayama T, Sato N, et al. Haplotype-based case-control study of CYP4A11 gene and myocardial infarction. Hereditas 2012;149:91-8
  • Hautanen A, Toivanen P, Manttari M, et al. Joint effects of an aldosterone synthase (CYP11B2) gene polymorphism and classic risk factors on risk of myocardial infarction. Circulation 1999;100:2213-18
  • Hengstenberg C, Holmer SR, Mayer B, et al. Evaluation of the aldosterone synthase (CYP11B2) gene polymorphism in patients with myocardial infarction. Hypertension 2000;35:704-9
  • Patel S, Steeds R, Channer K, et al. Analysis of promoter region polymorphism in the aldosterone synthase gene (CYP11B2) as a risk factor for myocardial infarction. Am J Hypertens 2000;13:134-9
  • Steves CJ, Spector TD, Jackson SH. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing 2012;41:581-6
  • Thomas F, Rudnichi A, Bacri AM, et al. Cardiovascular mortality in hypertensive men according to presence of associated risk factors. Hypertension 2001;37:1256-61
  • Force USPST. Using nontraditional risk factors in coronary heart disease risk assessment: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2009;151:474-82
  • McNicholas WT, Bonsigore MR; Management Committee of ECAB. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 2007;29:156-78
  • Hingorani AD, Liang CF, Fatibene J, et al. A common variant of the endothelial nitric oxide synthase (Glu298–>Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999;100:1515-20
  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317-25
  • Lin YA, Chiang A, Lin R, et al. Methodologies for extracting functional pharmacogenomic experiments from international repository. AMIA Annu Symp Proc; 2007. p. 463-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.